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measurenent of signals from the two systems. By design, DMORPH
reflects only the crosscorrelations between systems and not the
intracorrelations within the separate systenms.

DMORPH was applied to the input and output signals from
various artificial neural network architectures to attempt to
determine which networks, and which parameter settings within
each, induced the greatest structural similarity between input
and output signals after learning had taken place. Networks
tested included a “drive reinforcement” network of Klopf, a "back
propagation” network, and a network which learns by a method of
Bienenstock, et.al. The surprising results provided new insights
into the relationships between cognitive systems and their
environments and into the essential distinction between neural
networks as cognitive systems and neural networks as mere associ-
ative memories. For example, the initial tests of DMORPH have
explained the interesting psychological tendency of an observer
to always perceive the greatest degree of order in his observed
environment when his knowledge is at a certain intermediate stage
between total ignorance and complete understanding. Yet, the
application of DMORPH to network signals has shown that simple
correlation between input and output signals is misleading and
inappropriate as a measure of quality in a cognitive system.

-This research spplies to the development and testing of real
time autonomous learning systems suitable for application to
problems of avionics sensor fusion, adaptive sensor processing,
and intelligent resource management. i/, °
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MARTINGALE RESEARCH CORPORATION

BIOMASSCOMP PHASE I FINAL REPORT

1. INTRODUCTION AND OBJECTIVES

This is a technical report of a six month Phase I research
project supported by the U.S. Air Force Wright Aeronautical
Laboratories (WPAFB, OH)} under the Small Business Innovation
Research Program. This report presents a complete account of our
investigations of the subject pursuant to the objectives of the
original SBIR proposal, and is organized according to the listing
of those objectives in the proposal. In the pursuit of those
objectives, we have not only achieved the implementation of a
successful entropic index of the structural similarity of two
systems, but we have also identified errors in our planned
approach through the conduct of experiments that failed to con-
clusively demonstrate the expected results. This report details
both the successes and the failures, and the valuable information
that we have learned from them.

As stated in our Phase I proposal, our objective was to
demonstrate the feasibility of developing and applying an
entropic measure of structural similarity of systems so as to
obtain (in the follow-on project) an automated procedure for
mapping the architecture of a living aeural uetwcrk into a

machine. In order to accomplish this objective, our tasks were:
1. Identify and develop a mathematical technique for the
measurement and analysis of relative information content

in the signhals of a network,

2. Identify and develop a mathematical technique for the
parametric optimization of artificial neural network

Page 1




BIOMASSCOMP PHASE I FINAL REPORT

models as measured by the combined relative information
content of a functioning hybrid network,

3. 1ldentify the functional design of a multichannel bidir-
ectional signal translator suitable for the realtime
interface of a natural network on the multimicroelec-
trode plate (MMEP) apparatus of G. Gross at North Texas
State University (NTSU) to an artificial network,

4. Closely monitor and assist the ongoing work at NTSU to
demonstrate the capability of extracellular electrodes
in the MMEP apparatus to be used for the injection of
localized potentials capable of stimulating activity in
specific subnets of the cultured neural network,

5. Closely monitor and assist the ongoing work at NTSU to
demonstrate the ability to "condition” the behavior of a
natural neural network in culture through controlled

stimulation.

Our principal achievement has been the definition and
algorithmic implementation of a scalar measure of structural sim-
ilarity of two systems, based on extensive time-series of state
measurements (signal vectors) from the two systems. This report
details that definition, and the FORTRAN source code of the
algorithm is included in an appendix. A series of experiments
with random data vectors containing varying degrees of
correlations demonstrates the hehavior of the algorithm.
Moreover, these experiments predict an interesting psychological
tendency of an observer to always perceive the greatest degree of
order in his observed environment when his knowledge is at a
certain intermediate stage between total ignhorance and complete
understanding.

The application of DMORPH to neural network architectures
has shown that our approach to using the structure measure to
improve the architectural design of neural networks by comparing

Page 2
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them _o natural networks appears to have been flawed. Yet, the
flaw is not one that might have been easily detected without a
study of the results of the experiments (although the a posteri-
ori explanation in the form of a suitable "gedankenexperiment" is
simple enough), and its exposure has resulted in new and useful
insights into the structural and functional principles of neural
networks and other self-organizing systems. Those insights are
discussed in the "Analysis"” section of this report, and thney will
constitute the direction for our planned Phase II research.

1.1 Background

The outline of our argument is this: The objective of an
intelligent system is to minimize surprise, or novelty, in its
interaction with its environment in a manner that is consistent
with its "mission”. To this end, it builds predictive models of
the world and stores these models in any convenient recording
medium including, but not limited to, its own memory. A predic-
tive model will bte more carefully defined below in Section 7, but
heuristically it is a transition operator which associates each
sensory measurement with an empirically-based probability density
for the perceptive effects of future observations. (Ho & Lee
I4]1) This description is further illustrated by Watanabe, who
says ([10]1, p.142) "The existence of structure means that the
knowledge of a part sllows us to guess easily the rest of the
whole. "

The brains of humans and animals are not apart from the
universe, but are parts of the whole. Their function, which we
summarize with the verb, "to learn”, is to adopt a form which,
when explored by the animal through associative recall, allows it
to guess what is going on in the rest of the universe and to
ad just its behavior to minimize surprize subject to its mission.

Page 3
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‘ The design of artificial neural networks and neurocomputers
.l normally proceeds by using the best available data from the

neuroscience community to build and test computational models of
{ the components and structures of the brain. Models that work
well are improved upon. Models that flop are filed under

"experience”. The BIOMASSCOMP project (originally described in
Dawes [2]) was designed to speed up this developmental process by
defining a computable, numerical measure of the quality of a
neural network model. This measure estimates the degree to which
two neural networks are producing signals that have the same
structure. A low value of the measure means there is little
similarity in structure between the two systems. A high value
means the structures are strongly correlated.

The initial application of the structure function was
visualized to work as follows: An artificial and a natural
neural network would be connected as in Figure 1 by a bidirec-
tional communication link called the "synthetic axon bundle”.
The signals emanating from the natural network would be demodu-
lated with a pulse-ratzs demodulator and would constitute one of
two signal vectors. The signals emanating from the artificial
network would constitute the other signal vector. The structure
function would be applied to these two signal vectors and a
numerical “"structural similerity"” would be obtained. As the two
networks adapted through their learning laws, we would expect to
see changes in the similarity value due to the intrinsic self-
srdanizational behavior of both networks, and we would expect to
see this value stabilize asymptotically in the absence of
external stimuli to either system. Then, if we made any
ad justment to the architectural parameters of either system, we
would expect to see the structure value change again and
stabilize on a different value. We would infer that the higher
value of the structure function was obtained with the better set

of architectural parameters and we could therefore obtain further
improvements in the architecture by adjusting the parameters in

the direction of the highest structural similarity. Since the *

Page 4
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design parameters of the simulated network are under the dynamic
control of the experimenter’s computer program, it can automatic-
ally increment or decrement these parameters so as to drive the
value of the structure function to its highest value.

a\A
translator | HOST
<
e nsl
< > > trans atg; ::%L‘/_CZD
NEURO-
MIEP SYNTRETIC AXON BUKDLE COMPUTER

Figure 1. The Hybrid Artificial/Natural Neural Network

Aside from the problems illuminated later by ocur experi-
ments, there are a number of difficulties that we could and did
anticipate. One of these is that the structure function is
difficult to compute, but we have made considerable progress in
that respect, as we shall demonstrate. More serious is the fact
that the performance of complex, nonlinear systems does not
always improve or dedrade continuously as a function of their
desigr parameters. In particular, the performance may be subject
to bifurcations, catastrophes, and chaotic behavior as certain
parameters approach critical values. This mears that the search
for improvement may have to be undertaken through stochastic
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methods, such as simulated annealing, rather than by the more
standard "hill-climbing"” methods. Not the least of the problems
is the realization of the bidirectional communication link
between an artificial and a natural neural network, which relies
on the successful development of a method for multiple-site
stimulation of the natural network in the MMEP culture.

Page 6
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2. DEFINITION OF THE STRUCTURE MEASURE

Our initial task has been to develop the measure of struc-
tural similarity of the two networks, based on the concept of the
Gibbs relative entropy function as described by Watanabe (10].

We now have a structure estimator (called DMORPH) running and
have tested it on actual pre-processed data from Prof. Guenter
Gross’s laboratory at North Texas State University (cf., Appendix
A).

Any neurel network which is worth its salt does at least
this one job well: It builds internal representations of
external events in such a way that an appropriate stimulus at a
later time will recover "a substantial portion” of the entire
representation. Some have referred to this behavior as “"self-
orgdanization”, but that is a seriously misleading phrase.
Consider the following homely analogy: Two politicians, Mr. A
and Mr. B, have widely differing world-views. Mr. A sees
everything as either black or white, with nothing in between.

Mr. B meintairs a complex set of concepts and classifications for

analyzing events. A third politicien, Mr. Z, has just died.

In terms of organization, as expressed by the entropy level
of his neural activation states, Mr. Z is extremely well-
organized, since the activation ctate of his neurons is a delta
function in time and space. (This is to be distinguished from
his thermodynamic entropy which, while lower than that of a
warmer Jiving brain, is still rather high.) Mr. A is almost as
well organized, his activation state falling always into one of
two event catedories, redardless of the facts of the external
world. But Mr. B has the entropy of a very disorganized person,
since his mental state can be found in any of a large number of
configurations over time. Unfortunately, if he is a member of
the "wrong" political party, Mr. B’s ideas may reflect no corre-
lation whatsoever with reality in spite of their complexity.

Page 7
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Thus we see that organization, as measured by entropy, is
not to be mistaken as an objective function for intelligence.
There is no immediate monotonic relationship between the entropy
(of the probability distribution} of the state of one’s thoughts
and the elusive quality we call intelligence. Yet the concept of
entropy, properly applied, can help us to meke this quality much
less elusive.

The following sections detail the background and development
of DMORPH. Additional technical details can be found in Jaynes
[5] and in Watanabe [10].

2.1 Introduction to Entropy.

Entropy is a real-valued function whose domain is the set of
probability measures on some given probability space. When a
probability measure has a Radon-Nikodym derivative, p(x), this is
called the probability density function (pdf) of the probability
measure, and in this case, the entropy of p(x) is defined by

E(p) = - p(x)loglp(x)ldx .
Whenever the probability measure is finite, i.e., there are only
a finite number of events covering the sample space of x, then
the intedgral above can be replaced by the sum

E(p) = - SUM{ 1 log(pi) } (1

over the event sets with nonzero probabilities, Py (which we

shall refer to as the "nontrivial events of p"). It is not

difficult to see that this quantity can range between a minimum
value of zero, and a maximum value of log(N), where N 1is the
number of distinct nontrivial events of p. The minimum value is

taken when there is one certain event (in which case N=1)}. The
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maximum value is taken when P; = 1/N for each nontrivial event
of p.

In the following, we shall often speak of "the entropy of a
system”. This will always mean the entropy of the probability
density function for the states that the system can take. Of
course, the set of states for a given system is itself an
abstraction and one may use different state spaces for different
purposes. For our purposes, we are interested in the activation
state of an ensemble of neurons, and not in their mclecular
kinetics.

The entropy of a neural system is an extensive quantity.
That is, if the system is partitioned into two subsystems, there
will be three possibly distinct entropies to deal with: Those of
the two subsystems, and that of the whole system. Watanabe shows
us how to relate these three quantities.

2.2 Entropic Structure

Suppose that we are given a system whose state space = A
X B, is represented as the Cartesian product of two subsystem
state spaces, A and B. Suppose further that x £ & is
distributed according to the pdf P(x). If we write x = (u,Vv),
where u < A and v £ B, then we can obtain in the usual fashion
the marginal probabilities of u and v as

P,(u) [ P(x) av
!
and (2)

Ph(v) fAP(x) du

We can now obtain a second pdf on & as follows:

Q(x) = PA(u) P,o{(v)

B

Page 9
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The random vectors u and v are jipdependent if and only if
P(x) = Q(x}, by definition.

Now, given any two pdf’s P1 and P2 on a single state
space, §, J.W. Gibbs has defined the function,
G(P,,P

SUMi [ log(Pli/PZi) 1, (3

1»Fp) = 1i
and has proved that it is always nonnegative, and that it

vanishes if and only if P1i = P2i for all i . It fails to be
a metric on the space of pdf’s on £, in part because it is not
symmetric (although that is easily remedied), but we need not go

into much more detail than this.

In the special case in which P2 is derived from P1 as Q
was derived from P above, we can now define the structure
function Jp(A, B):

JP(A,B) = G(P,Q)
The notation on the left stresses the fact that the state of the
original system & 1is distributed by the pdf P, which is the
only pdf in sight, and that each partitioning of the system into
P(A,B)
which depends on P and on the two marginal probabilities that

factor spaces A and B produces the nonnegative number J
fall out of the state space factorization. These two marginal
probabilities have their own entropies, E(PA) and E(PB), and it
can further be shown that

JP(A,B) = E(PA) + E(PB) - E(P) * 0. (4)
The proof is in Watanabe [10]. Because of this equation, the

structure function is also referred to as the "excess entropy"”

generated by the assembly of two systems into one.
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Note that the structure function vanishes if and only if the
subsystems are statistically independent, i.e., if and only if
their joint pdf (P) is the product of their separate pdf’s. This
in turn implies that there is no (pairwise) correlation between
any component of u % A and any component of v £ B, although
there may well be internal correlations within u and within v,
The converse is false (lack of pairwise correlation does not
imply independence), but the contrapositive is, of course, true:
If crosscorrelations are nonzero, then the structure function
will be strictly positive.

We have defined a normalized version of the structure
function, called DMORPH, which is constrained to take values
between O and 1, regardless of the dimensions of the state spaces
and redgardless of the (finite) number of primitive events which
partition the state spaces. Thus, we have

DMORPH = JP(A,B)/MP(A,B), (5)

where

MP(A,B) = E(P) - Max(E(F ).E(PB)]

A
The normalization divisor, MP(A,B), is only our best current
estimate of an upper bound for the structure function. We have
not proven that is a supremum. It is obtained by supposing that
the smaller of the two systems (say, B) is completely correlated
with a subsystem of the larger, in which case the "excess
entropy” is the difference between the entropy of the whole and
the entropy of the larger subsystem. This un-rigorous argument
is supported by numerical experimentation and might be made into
a proof with a little more effort.

The normalized structure function, DMORPH, is the tool which

we have used in our experiments to measure the relative similari-
ty of structure between two systems based on vector samples of
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BIOMASSCOMP PHASE I FINAL REPORT

signals from the two systems. Computation of DMORPH relies on
the ability to estimate the three constituent entropies, and this
is not an easy task. Perhaps the most significant contribution
of this work is the development and implementation of this
algorithm.

2.3 Computation of the Structural Similarity (DMORPH)

In order to estimate the entropy (relative or otherwise) of
a system, it is necessary to obtain an estimate of the probabil-
ity density function for the state-vector of the system. In
order to account for both spatial and temporal correlations in
the joint PDF, the state-vector must be sampled and held over a
time interval which is long enough to span the coherence of the
system. Since the long-term memory of a neural network is
supposed to maintain temporal coherence over the lifespan of the
network, it will clearly not be possible to sample, hold, and
process the full quantity of data needed to characterize the
system!

Instead, it will have to suffice to use a time window which
is long enough to cover the short-term dynamics of the network,
i.e., its "impulse response”. With such a window, the resulting
estimated PDF will reflect the short-term memory (STM) of the
network, including both the neuronal transitions and the network
effects, but can only hope to reflect as much of the long-term
memory dynamics as are evident within the sample window. These
may not be insignificant. According to Klopf [81 the coherence
needed to obtain storage of long-term memories in animals is on
the order of about three seconds.

Consider now the problem of estimating the PDF for the

signal vector (including a number of time samples) of the system.
Traditionally, this would be done by partitioning the ranges of

Page 12
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the samples into "event bins”, and accumulating a histogram.
The entropy would then be estimated by computing

E = SUMi[(Ni/N)*log(Ni/N)], (6)

where Wi is the number of occurrences of the i-th event, and N is
the total number of trials in the experiment. For a vector with,
say, 8 components and a time-window of, say, 32 samples per trial
(10 samples/sec for 3.2 sec) and a partition of the range of each
of those 256 variables into, say, 8 levels —- that comes to n =
8*%%256 possible events! This is clearly beyond the capacity of

available computational methods.

The estimation technique known as the Maximum Entropy Method
(MAXENT, cf., Jaynes [5]) overcomes these problems by coanstrain-
ing the pdf’s of interest to lie within certain limited classes
of functions. For example, they may seek the pdf of maximum
entropy among all those pdf’s whose mean and covariance are equal
to the semple mean and the sample covariance. Under these and
similar constraints, the solution may be found by the method of
Lagrandge multipliers. Although these methods have been applied
to the study of living neural networks (9] we assert that the
effort is futile. The pdf of the sidgnal vector of a neural
network is typically extremely complex, as befits a system which
by design extracts and stores millions of similarity clusters of
data which it finds in its sensory inputs. Thus the signals from
such systems will of the essence be "meda-modal”. But the MAXENT
distribution determined by the first two statistical moments (on
an infinite domain) will be unimodal, namely the multivariate
Gaussian. Since it is precisely the fine structure of the signal
density that we are interested in, and not the textbook
statistical parameters, we need a nonparametric method which
reflects only those constraints imposed by our measuring

instruments.
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In the end, our methods for understanding and reverse
engineering the brain will loock very much like the method that
the brain uses for understanding and reverse endineering its
sensory environment. Such an “eternal golden braid” will make
the recursive tangles of Godel, Escher, or Bach look like mere
children’s toys. In the following description of our method for
estimating structural similarity, the reader is invited to
observe that the design of the computational methods may hold

] to tl lesi ¢ intelli I ) 1] ]
¢ thei lication.

We are approaching the problem in the following way. For
computation of ihe DMORPH function THREE entropies must be
computed. We can reduce that to just ONE entropy via the
following argument.

We argue that any partitioning of the sample space into
events prior to the collection of data imposes an unwarranted
bias on the resulting entropy measurement. For example, the use
of 7 threshold levels (defining 8 events) on a real-valued
measurement must of necessity define two regions which are
infinite in extent, and the placement of these thresholds
presumes some knowledde of where the bulk of the measurements
will lie. Therefore, for our computations, we use only the a-
priori knowledde of the computational resources at our command to
select the NUMBER of event-bins for each component of the sampled
datal ; and we then adjust the BOUNDARIES of these bins (i.e.,

1: In truth, even this strategy imposes hidden a-priori
constraints. It assigns an arguably unwarranted priority to
numerical contiguity within events. Why, for example, should
numerically contiguous events be preferred by nature over,
say, a partitioning in which events are defined by the value
of the third significant digit of an octal representation of
the measurements? The answer is reasonable and straight-
forward: Our measuring instruments have inertia and this
results in an unavoidable time-averaging of results. Thus,
the definition of events by contiguous ranges of measurements
automatically incorporates this smoothing constraint.
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the thresholds that separate them)} during data collection so that
the number of observed events per bin is the same (+/- 1)} for
each bin. This results in a "tiling"” of the n-dimensional event
space (n = product of sample-vector dimension times the number of
time-samples per trial) into equiprobable events.

24

Figure 2. Binary Tiling of 2--D Sample Space

The actual procedure is illustrated for a two-dimensional
random vector as follows. (See Figure 2.) Tiling of the subsys-
tem sample spaces is easily accomplished using a sort routine on
the components of the sample vector. We are currently partition-
ing each component into only two equiprobable events because of
the computational limitations. (There is a big difference
between (2)%%256 events and (3)*x%256 events.)} Thus we look
first at component 1i=1 of the sampled data and use a sort
routine to find the median, where we locate the single threshold
for the first component. Then, for all sample vectors whose
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first component lies below the threshold, we find the median
This becomes the first of TWO
The second threshold is

obtained by finding the median of the values of the second

value of their second components.
thresholds for the second component.
components whose first components lay above the threshold. This
results in four "tiles"” which partition the two-dimensional
samples into equiprobable events. If the sample vectors were
three-dimensional, there would be four thresholds on the third
axis, and the seven total thresholds would partition the three-
dimensional space into 8 equiprobable events.

2A

i
———————J-—-‘_J_J‘{_

T

Figure 3.

Tiling of 2-D Sample Space with 8 Events per Segment

This tiling of the space is (in the limit of large numbers

of thresholds on each axis) equivalent to obtaining a PDF for the

data,

in that the reciprocal of the volume of each nonvacuous

tile is proportional to the probability of finding the state of

the system in each unit volume within that tile.

Although the

tiling is obviously dependent on the order in which the axes are
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selected, we conjecture that the differences become insignificant
as the number of thresholds on each axis increases. It is
instructive to observe that the tiling is a constructive repre-

sentation of the probability measure which has the histogram PDF
for its Radon-Nikodym derivative. The measure (more precisely,

the inner Jordan content) of any set of states is obtained by
counting the number of tiles within the set, the same as would be
done if the tiles were defined more customarily as unit hyper-
cubes. This is more easily seen when the number of events per
segment is larger than 2, as in Figure 3. That is, whereas the
unit tiling which is used for building a normal histogram repre-
sents the (translation invariant Lebesgue) measure associated
with the uniform PDF, the tiling derived from the data represents
the (in general, non-translation invariant) measure associated
with the actual PDF of the data.

Now, if we had only ONE entropy to compute, there would be
nothing to it, because our tiling guarantees that the sample
frequencies are uniform, and the entropy of a uniform distribu-
tion over n events is the maximum possible: 1log(n). But we are
measuring the entropies of two presumably coupled systems, having
n and m events, respectively, and there are THREE entropies in
question, namely the two entropies of the separate systems, and
the entropy of the composite system. We are at liberty to tile
the sample spaces of the two subsystems any way we like. But
once the events in the subsystems are defined, then the events in
the composite system are determined as the product space of the
two subspaces. The resulting entropy estimate E(P) for the
composite, therefore, must be computed by the usual formula (6).
It will be somewhat less than its maximum value (log(m¥n)},
according to the degree of crosscorrelation, or structure,
between the subsystems, and the relative (excess) entropy will be

JP = log(m) + log(n) - E«F) > O. (7)

Page 17

®
I\ J




BIOMASSCOMP PHASE 1 FINAL REPORT

From this, it is then easy to compute DMORPH using equation (5).
One observes that because the tiling maximizes the entropy
estimate for each of the subsystems, DMORPH measures only the
crosscorrelations which exist between them and is unaffected by
any changes in the internal organization of one which are not
reflected by corresponding changes in the other. This is also
confirmed by our experiments.

Listings of the program (DTEST)} which computes DMORPH and
its associated tilings and entropies are included in Appendix B.
Experiments showing the performance of DMORPH are described in
Section 2.4, and the experimental configurations and their
resulting graphs are shown in Appendix C.

We conjecture that this method of event-boundary adjustment
can form the basis for a learning law for neural networks which
maximizes the information content of internal representations of
external events. This will be investigated further in Phase I1I.

2.4 DMORPH Characterization Experiments
2.4.1 DRescription

The DMORPH experiments were performed to test and verify the
performance of the algorithms which construct equiprobable event
tilings of the two subsystem sample spaces, which compute the
entropy of the composite system, and which compute the normalized
structure function, DMORPH.

In the first set of experiments (1 through 4), random

vectors X and Y of dimensions 2, 4, 6, and 8 were generated.

Their components were uniform in the interval [0,1).2 These

2: The tiling algorithm worked so well that it immediately
detected a serious fault in our random number denerator,
which we subsequently replaced with an algorithm from
Abramowitz & Stegun.
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experiments determined the running time for the algorithm and
demonstrated the relationship between the dimensions of the
subsystems and the amount of data which was needed to stabilize
the entropies and the structure value, DMORPH. A sample plot
showing the entropies (upper three curves) and DMORPH (lower
curve) as they evolve with additional trials of the experiment is
shown in Figure 4. Similar plots, together with the experimental
configurations are found in Appendix C to document the
characterization experiments.

FILE: EXP36.DAT; ROUS: 1 TO 288 ; PLOT OF TRIAL vs.  UH. ENTROPY —
X ENTROPY ... X
Y ENTROPY - o
4.93 7 e+ DMORPH— ..y
—
4.39 -
3.83 -
3.29 4 /’
SENPV = Ly X —& -5 ass B
274 | e
| 7
f
2194/,
e R X X “ X » X
1.64 4f;
{
1.18 JH
b
8.55
M“‘""‘ RaT T F
T T T T T 1 T T 1
1.8 23.1 45,2 67.3 ©9.4 111.6 133.7 155.8 177.9 206.8
TRIAL

Figure 4. DMORPH Experiment for Dim(X)=2, Dim(Y)=3
Pseudorandom Data without gross correlations.
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In the second set of experiments (5 and 6), intracorrela-
tions were introduced into one or both of the random vectors X
and Y to determine whether the measured structural similarity
between X and Y were indeed independent of these intracorre-
lations.

In the third set of experiments (7 through 35), crosscorre-
lations were introduced between X and Y to determine their
effect upon the value of DMORPH and to evaluate the normalization
divisor to see whether it is close to the theoretical maximum of
the relative entropy.

2.4.2 Results

The graphs in Appendix C illustrate the results of the
DMORPH characterization experiments.

Graphs of experiments 1 to 4 show that as the dimensionality
of the systems increases, the quantity of data needed to obtain
stable estimates of the entropies and, hence, of DMORPH also
increases. This is because the total number of distinct events
defined by the tiling algorithm on a subsystem of dimension N
is 2N, and before the subsystems can possibly exhibit their
maximum entropy, the number of samples per bin must be somewhat
larger than unity. The tilind algorithm insures that within each
subsystem, the events will be defined so that no matter how much
data is taken, the greatest difference between the number of
samples assigned to any two event-bins will be plus or minus one.
(Exceptions occur whenever certain sample values occur multiple
times, which prevents insertion of a threshold to separate them.)
But whenever that difference is a sizeable fraction of the total
number of data samples per bin, the entropy will be substantially
below its theoretical maximum. In particular, when the first
sample is taken, the distribution of samples in the event bins

looks like a delta function, so the entropy always starts at
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zero. After that, it climbs toward its theoretical maximum
(since the event-bin boundaries are being adjusted during data
collection}, which is log(ZN). We convert the logarithms to the
base 2, so that the theoretical maximum entropy for any of these
systems is just the dimension of the system.

Note that the value of DMORPH in these graphs begins at zero
and then rises to a maximum value before falling back toward

zero. The reason that it falls back toward zero, of course, is
because there is very little crosscorrelation between the
components of X and of Y. (The residual makes a nice measure
of the quality of the pseudorandom number denerator.) But the
fact that it rises to a maximum showing some "false" structure
before adequate data is collected (see Figure 4 again) leads to
some interesting comparisons with the way people learn about
their environment. It seems to say that when we are confronted
with a totally structureless system to cbserve, and we begin to
collect data on it, we will first be convinced that the system is
structureless; then we will begin to see patterns; but as the
data becomes statistically complete all the patterns disappear.
It also confirms the wisdom of carving out low~dimensional
analytical tasks, because with the really big problems (e.g.,
Neural Network theory, or Artificial Intelligence) the amount of
data which one is likely to obtain during the attention-span of
the average funding agency will most likely lead one to make
grandiose claims of great discoveries which are doomed to
evaporate when the data are more complete,

Subsequent experiments, described below, will show the same
qualitative behavior, except that when there really is some
crosscorrelation between the subsystems, the "false” structure
then gives way to a nonzero asymptotic value.

In the next set of experiments, numbered 5 and 6 in Appendix
1 T Xz) and the
results show that DMORPH is impervious to such deception.

C, intracorrelations were introduced (e.g., X
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hl Finally, crosscorrelations were introduced (e.g., X2 1= Y2,
and x2 .= X2+Y2), and these show that the structure function is
properly sensitive to them. Many experiments were performed,
showing, e.g., the structure between the input random vector and

the output random vector for various simple matrix transforms.
Finally, when Y 1is made equal to a subvector of X, DMORPH
rises almost to unity, showing that the normalization divisor is,
if not precisely correct, quite adequate to measure the relative
structure between two systems without being biased by the
dimensionality of the problemn.
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3. ADAPTIVE STRUCTURE OPTIMIZATION

In order to test the applicability of the structure measure
to the control of neural network designs, it is necessary to

implement one or more typical neural network designs and simulate
the interaction of that network with the biological network.

7

With such a simulated interaction, it is possible to treat the
randomly generated (and naturally generated) input signals as
being representative of the natural network structure, while the
output signals represent the artificial network structure.

Originally, it was our intent to implement these trial
networks on the MassComp MC5700 at the Biosciences Laboratory at
North Texas State University, which has direct access to the
signals emanating from a living culture of several hundred
mammalian neurons (see Appendix A). However, it would not be
possible to perform the pulse-rate demodulation and the DMORPH
tiling in real time, and there is as yet no capability for the
artificial network model to talk back to the natural network with
any form of stimulation. Therefore, we opted to take simulta-
neously recorded data from multiple channels in digital form and
to perform the experiments off line at our own facilities.

In the following sub-sections, we describe the models which
we have implemented for these experiments. The details of the
experiments and their results are described subsequently in
Section 6 of the report. All of our network model software was
implemented under our proprietary dynamical system simulator
package, SYSPROTM. This has allowed us to prodram the published
versions of these models into a flexible simulation module with
minimal duplication of effort. In all cases, it is only
necessary to produce a SYSPRO primitive system which computes the
transfer function and the learning algorithm of the subject model
and to link it into a possibly minor modification of our SYSPRO
composite network model as the replicated node. The specific
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interconnect graph is specified at run time through the system
initialization instructions.

3.1 The Back-Propagation Model

The back-propagation model which we used is the one which is
described in Rumelhart and McClelland [7]. This required almost
no programming effort, since it is a model with which we have
extensive experience and which we include as a sample network in
our commercial neural network simulator package. The network was
configured as a 4-3-4 feedforward network (including direct links
from the input layer to the output layer).

The transfer equations for the processing elements are given
by

y‘j = o ( SUMi zji Xy ; B, C ),

vhere o¢(A;B,C) is a sigmoidal function of the first argument,
with values ranging between O and 1, whose maximum slope, C, is
attained at A = B. Except for the ability to control the value
of the slope (C) at the desired threshold (B), this function is
the commonly used "logistic" function:

e(x;b,eY = 1/0 1 + exp(~4c(x-b) 1.

The learning law is modified only so that those factors of the
update equations which can be computed "locally” are computed

' .thin the neuron model, and those which require information at
the network level are computed by the network model. (Our
simulator protocol facilitates the assembly of system models
written in heirarchical fashion, but it i.poses the discipline of
using only data which is available to subsystems through the
input terminals and the local state vector.)
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3.2 The Bear-Cooper-Ebner Model

The BCE model is based on the description by Bear, Cooper,
and Ebner [1] of a learning algorithm attributed to Bienenstock.
This learning algorithm is partly Hebbian and partly anti-Hebbian
in that each synaptic weight learns in proportion to the presyn-
aptic activation, but the proportionality constant may be posi-
tive or nedgative according to the relationship of the current
post-synaptic activity to the recent average of the post-synaptic
activity. That is, if the recent activity has been high, but the
current activity is lower than the average activity, the synaptic
weight will be reduced. If the recent activity has been low,
then almost any post-synaptic activity will be greater than the
average activity and will cause an increase in the synaptic
weight. The Bienenstock law is,

dm./dt = @(c,c) 4. ,
J J

where mj is the j-th synaptic weight, dj is its presynaptic
signal, ¢ 1is the neuronal output signal (in the linear region),

and c¢ 1is the average of ¢ over a recent time interval.

We implemented the @ function (see Figure 5) as a spline
of a parabola on the left and an exponential learning curve on
the right of the crossover point, @M . We implemented the
neuronal transfer function more generally than is described in
BCE, so as to include a sigmoid nonlinearity at the output (the
same logistic sigmoid used above in the back-propagation model)},
rather than to assume operation in the linear region. This
necessitated a decision on the interpretation of ¢ 1in the
learning law, and we chose to interpret ¢ as the neuronal

output, rather then as the postsynaptic activation.
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Figure 5. The Bienenstock # Function (two versions).

3.3 The Klopf “"Drive-Reinforcement” Model

We implemented the drive-reinforcement model in accordance
with the description given in Klopf [6]1. In order to control the
learning rate, we augmented the learning algorithm with a GAIN
factor, which in effect scales the area under the learning rate
constant curve (the curve determined by the constants, c s in
Klopf’s report). By setting GAIN = 0, we could turn learning off
at any time so that the tiling operation of DMORPH would have a
time-invariant segment of the network’s signals to work with,
i.e., one in which the structure was not changing during the
tiling operation. Also, since the GAIN factor was included, we
chose to implement the learning rate constants, cj, so that
their sum is unity. This then treats the cj vector as a weight
vector for a weighted averagde of the prior history of the
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synaptic efficacies. The relative magnitudes of our values for
c‘j were (almost) the same as used by Klopf.

When the Klopf neurons were connected into a network, we
decided not to make any of the synapses non-plastic, since inside
the network it is unlikely that the distinction between condi-
tioned stimuli (CS) and unconditioned stimuli (US) could be made
a-priori, and in any case our time constraints did not allow such
fine-tuning.

®
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4. DESIGN Or THE BIDIRECTIONAL AXON BUNDLE

In this section we describe the proposed technique for
constructing an interface between a living tissue culture of
active mammalian neurons and an artificial neural network which
is hosted in a general purpose computer. The design is based on
the laboratory setup in the neurophysiology laboratory of Dr.
Guenter W. Gross at North Texas State University and on his

proposed apparatus for localized stimulation of that network.

First we present a brief description of the NTSU laboratory
apparatus, which is more thoroughly described in the Appendix.
After that, we describe the status of the work being conducted at
NTSU and at Southern Methodist University to achieve the local-
ized stimulation of the culture network. Finally, in the third
subsection following, we describe the functional design of a
bidirectional interface, called the Synthetic Axon Bundle, which
will enable the culture network to influence and be influenced by
the signals in an artificial neural network.

4.1 Description of the NTSU-Gross Apparatus

Professor Gross’s laboratory apparatus is described briefly
here and illustrated thoroughly in Appendix A. The multimicro-
electrode plate (MMEP) on which the culture is maintained is
described first, followed by a description of the recording
chamber design. The digital processing system is illustrated on
pade A-18.

Signals from the neural culture are amplified and patched
into the data acquisition and control processor of the Masscomp
MC5700 computer, where they are converted to digital form,
typically at a 30 kHz per channel sample rate. The digital
signal is filtered for A/C hum and is then processed for burst
detection (pages A-24 to A-29). Sidgnals at various stages of
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processing can be selected for display on the color monitor (page
A-25).

The signal monitoring apparatus is supplemented by an
auditory monitor, which codes each electrode’s activity into tone
bursts at a frequency that is unique to the source electrode, and
by an LED display which provides visual cues to the activity on
each electrode. These were originally designed as "PR enhance-
ment instruments” (where PR stands for Publie Relations), but
they have proven to be valuable intuitive aids. The human ear
can detect patterns and correlations in the data that would go

completely unnoticed on a strip-chart recording.

Not shown in the hardware description of Appendix A is a
limited capability for stimulation of the cultured network. This
is described in dgreater detail below. First, we describe the
design of a Synthetic axon bundle which presumes the availability
of a suitable stimulation apparatus.

4.2 Functional Design of the Synthetic Axon Bundle

The purpose of the Synthetic Axon Bundle is to provide the
communication link between the natural mouse neural network (MNN)
in culture and the Artificial Neural System (ANS) beind simulated

on the MASSCOMP. That is, it’s function is to

(1) Modulate the signals that are output from the ANS so
that they can be used to stimulate the MNN and

(2) Demodulate the signals that are recorded from the MNN so
that they can be used as input to the ANS.

Figure 6 illustrates the basic functional design, and the
following description provides some of the details.
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Figure 6. Design of the Synthetic Axon Bundle

It is believed that the output of an ANS should represent
some sort of information transfer, either by its effect on the
modification of synaptic weights or the interpretation of what
this neuron firing means (the recognition of some pattern, say).
Therefore it is necessary to modulate each ANS cutput into a
spike train to be used to stimulate the neurons of the MNN which
are in close proximity to a particular electrode. There is no
requirement that the processing clocks of the two neural systems
be on the same time scale. The only requirement that exists is
that the data from the ANS be modulated in such a manner that the
MNN finds it to be "stimulating”. Some experimentation will be
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needed early in Phase II to verify that the following proposed
design will result in a real time stimulus of the MNN.

The simulation time increment, &t, of the ANS model will be
set so that the data produced by it each At can be modulated and
used as a stimulus over the next At seconds for the MNN. Of
necessity, there will be a At second time lag between the data
output from the ANS and the stimulus being applied to the elec-
trodes of the MNN. Since we expect to perform temporal sampling
as well as sampling across the electrodes this should not be a
problem in our search for cross-system structure.

The amplitude of the voltage spikes generated to drive the
MNN will be consistent with the amplitudes observed in the MNN.
The frequency used will be proportional to the signal amplitude
out of the ANS.

The signals recorded from the MNN were collected on one of
multiple micro electrodes in Dr. Gross’s laboratory. The data
used in many of the experiments performed during the Phase I

effort was compressed using the following processing algorithm.

Eight simultaneocus channels of data were collected at a
data rate of 30,000 BH=z.

This 30,000 Hz. data rate is then reduced to 500 Hz. by
saving only the maximum absolute value of each disjoint
and contiguous set of 60 data values on each channel.

The dynamic range of these data values is further reduced
by comparing the data value with a threshold and replacing
it by a 1 if the data value is greater than or equal to
the threshold or replacing the data value by zero if it is
less than the threshold.

Finally, a 16 point rectangular filter (with unit weights)

is applied to a sliding window of the data so that the
data which is input to the ANS is an integer between O and
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16, inclusive. This data is to be interpreted as Pulse
Repetition Frequencies (PRF) for the neurons which are
being recorded on each electrode. The following table
gives the range of PRFs for each of the possible 17 data

values.
M(t) =0 PRF < 31.25 Hz.
M(t) =1 31.25 3 PRF < 62.5%0 Hz.
M(t) =2 62.5 2 PRF < 93.7%5 He=z.
M(t) =3 93.75 2 PRF < 125.0 Hz.
M(t) =4 125.50 & PRF < 156.25 Hz.
M(t) =5 156.25 & PRF < 187.50 Hz.
M{t) =6 187.50 2 PRF < 218.75 Hz.
M(tYy =7 218.75 & PRF < 250.00 Hz.
M(t) =8 250.0 2 PRF < 281.25 Hz.
M(t) =9 281.25 * PRF < 312.50 Hz.
M(t}y =10 312.50 & PRF < 343.75 Hz.
M(t) =11 343.75 & PRF < 375.00 H=z.
M(t) =12 375.00 2 PRF < 406.25 Hz.
M(t) =13 406.25 * PRF < 437.50 Hz.
M(t) =14 437.50 & PRF < 468.75 Hz.
M(t}y =15 468.75 1 PRF < 500.00 H=z.
M(t) =186 PRF 2 500.00 Hz.

This aldorithm hds several defects, but it also has the
important advantade of its mere existence. Thus, we were at
least able to run experiments on genuine digitized data from the
MMEP, but the interpretation of results must be gualified by the
effect of the following problems.

First, the data collected on any single micro electrode is
known to be the result of firings of multiple neurons. These
signals should really be separated rather than lumped together.

Second, the threshhiold used to declare a signal present on
the channel (electrode) is not changing over time and therefore
the false alarm rate is not constant on the channel.

Third, the data is collected at an extremely high data rate
but the high data rate features of the data are nct exploited in
the signal processing algorithm at all. Why waste all the
magnetic storage?
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Fourth, the definition of bursting for the channel is
limited to 17 discrete values rather than taking on any value on
the positive interval from zero to the sampling rate.

A set of signal processing algorithms which addresses the
majority of these problems have been formulated by Martingale
Research Corporation and supplied to Dr. Gross, but they have not
yet been implemented due to lack of funds at NTSU for support of
student programmers. The design specification for these algo-
rithms were presented in (Dawes and Collard [3]) and are repro-
duced in Appendix D.
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5. PROGRESS WITH STIMULATION AND CONDITIONING

In order to utilize our structure function for improvement

of neural network designs in a real time interactive experiment,
it is required that the natural and the artificial neural net-
works be connected for bidirectional communications. Part of the
technology to accomplish that is described in the preceding sec-
tion and is called the "Synthetic Axon Bundle". It is basically
little more than a modulator/demodulator (MODEM} which translates
the signals from a form suitable to their scurce to a form
suitable to their destination. But the specific component which
injects the signal into the MMEP has not been specified or tested
yet.

What is needed are the following capabilities:

1. A multichannel pulse generator whose signal output
characteristics are subject to computerized control
individually by channel acceording to pulse amplitude and

pulse rate.

2. A localization of the voltage gradients within the MMEP
so that dradients capable of inducing depolarization
into neurites are limited to the vicinity of the active

electrode.

The first requirement is not a big problem, but the second is
more difficult to satisfy. At present, the input signal is
applied between the selected electrode and the metallic bezel
which surrounds the recording area (see page A-9). This results
in depolarization of an estimated 10%¥ to 40% of the neurons in
the culture. Anything which is more selective will have to be
based on the bipolar excitement of adjacent pairs of MMEP elec-
trodes, and this will require some redesign of the preamplifier
boards.
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A team of electrical engineers under the direction of Prof.
Lorn Howard at the Electrical Engineering Department of Southern
Methodist University is working on the stimulation problem. Dr.
Gross at NTSU presently has a spike-signal generator connected to
the MMEP which is capable of injecting a signal into a single
electrode at a selectable pulse width and rate. But without
sufficient control to be able to simulate bursting, he is unable
to demonstrate any form of conditioning of the network.
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6. EXPERIMENTS PERFORMED AND THEIR RESULTS

6.1 Back-Propagation Experiments

We ran some simple experiments using an eleven neuron feed-
forward network which learns by the "back-propagation” algorithm
to simulate the communication of a noncontrollable neural network
with a controllable one. The feedforward network is the 4-3-4
network shown in Figure 7. Its four input signals consisted of
raised sinusoids of various amplitudes and phases and its output
is determined by the weights and biases of the processing
elements.
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Figure 7. The 4-3-4 Backpropagation Network

To test the structure function on this network, we ran two
experiments. Both experiments used the same input vector
consisting of the four raised sinusoids, and both began with a
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random initialization of the weights of the network. With
learning turned off, the network was exercised for 1500 seconds
of simulation time (at 10 state updates per second) to obtain
baseline structure with the randomly initialized weights. Then
the learning was turned on and the "desired" output wes set equal
to the input vector. Convergence was fairly rapid, and the
output took the qualitative appearance of the input, with
distortions appropriate to the nonlinearities of the sigmoid
function. Then learning was turned off and the network was again
exercised to obtain the post-learning structure.

In the first experiment (BP4 #1,2, p. C.34-35), the baseline
value of DMORPH was 0.356 prior to learning and 0.336 afterward!
The structure actually declined after learning. Obviously there
was an error in our procedure.

Ordinarily, we would not report on the many experiments in
which we have identified procedural errors, but in this case, the
error was especially instructive and it supplied us with an
important clue to the role of causality in neural transductions.
That clue is taken up adain and discussed at greater length in
Section 7. For now, we merely point out that in the first

- experiment, we sampled both the input vector and the output

vector immediately upon presentation of each new input to the
network. Consequently, the signal that was present on the output

terminals was the one that was left over from the previous input.

The second experiment was the same as the first, except that
the inputs and outputs were sampled on the half-second instead of
at each whole second of the simulation clock. This allowed five
simulation cycles for the input, which only chandes at the begin-
ning of each whole second, to propagate through to the output.

In this experiment the pre-learning structure was 0.446 (BP4 #3,
Page C.36), and the post-learning structure was 0.515 (BP4 #4,
Page C.37).

Page 38




'!!-!-I—l-lII.Il-.-.l.-..IllIlIII-lIlIlIIllIIlIIIIIIIII------::*

MARTINGALE RESEARCH CORPORATION

Not only did the post-learning structure show an increase
- over the pre-learning structure, but the pre-learning structure
as determined by the lagded sampling (0.446) was higher than the
pre-learning structure of the first experiment (0.356). This is
1 because in the first experiment, the structure reflected the

correlation that exists between one sample of a sinusoid and the
network-transduced image of anocther sample approximately 1/20
cycle into the past. In the second experiment, the structure
reflected the correlation that exists between each input sample
and its own transduced image.

6.2 BCE Experiments

The BCE experiments were originally planned to parallel the
foredoing BPE experiments for a small network whose learning law
is due to Bienenstock (described above). After implementing and
testing a network of neurons using that learning law, however, we
observed & phenomenon that led us to discard our planned experi-

ments, at least for now.

What we observed was that if a constant nonzero input was
supplied to one synapse of a BCE neuron, the synaptic weight, and
consequently the neuronal output, quickly reached a periodic
state. The period of the oscillation was directly proportional
to the length of the window used for the sliding-window average
of the postsynaptic activation. That is, a long window produced
a low frequency oscillation, while a short window produced a high
frequency oscillation. The length of the period is of the same
order of magnitude as the length of the sliding window. The
€raph in Figure 8 shows this behavior.

In retrospect, it might have been worthwhile to go ahead and
perform the DMORPH experiments on this kind of network, but there
was not sufficient time. We report these results as a matter of

interest regarding possible future use of the model.

®
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Figure 8. Oscillatory BCE Response to Unit Step Input

6.3 Drive-Reinforcement Experiments

In late December, we received Klopf’s report {61 on his work
with the modified differential Hebbian learning law of Sutton-
Barto, which he calls the Drive-Reinforcement model. We were
able to implement a small network of neurons with the D-R
learning law in a couple of days, and we ran a set of experiments
similar to the BPE experiments, but on a four-neuron network. In
this series of experiments, each neuron received a separate
input, and each neuron’s output was sampled. Thus our structure

function was evaluated on a four-by-four system.
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Figure 9. The Drive-Reinforcement Network

The experiments were designed to measure the effects of both
the learning algorithm and the architectural parameters on the
structural similarity between the input vector to the network and
its output vector. To determine the effect of the learning
algorithm, we began with a random initialization of the synaptic
weights on a four-neuron network connected as in Figure 9. This
interconnection incorporates two feedback loops, which helps to
randomize the latency between onset of signals at the various
inputs to each neuron and thus guarantees that the drive-
reinforcement learning algorithm sees the necessary delays. We
did not hard-wire any synapses, since in the network setting it
is not clear that any synapse may know a-priori that it will be
receiving the unconditioned stimulus (US). The components of the
C vector (learning rate at delays of 0.5, 1.0, 1.5, 2.0, 2.5 sec)
were established at approximately 1/10 of the values sugdested by
Klopf so that the area under the sliding "C" window would be
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unity. In particular, we chose C = (.4, .25, .2, .1, .05). By
setting the GAIN parameter at 10, we could scale these back up to
approximate Klopf’s settingds, or we could alter their values
directly.

The four input signals were the same raised sinusoids as
were used for the Back Propagation experiments, except that their
values only changed every three seconds in this experiment.

Since the Drive-Reinforcement neuron cycles only twice each
simulation second, this gives time for the signal to propagate
around the feedback loops before the input is changed. Other-

wise, the procedure was the same as before. Learning was turned
off to obtain a baseline input/output structure. Then learning
was turned on until the synaptic weights had undergone signifi-
cant change (but not londg enough for any weight saturations to
occur). Then learning was turned off and the network was
exercised with the learned weights to obtain the post-learning
input/output structure.

The pre-learning structure with random weights was 0.480 and
after learning it was 0.412 (Page C.38,39).

A second experiment was run in which the values of C(1) and
C(2) were reversed. This was an attempt to determine the effect
of architectural adjustments on the post-learning structure. The
pre-learning structure, of course, did not change, because this
architectural change does not affect propagation when the learn-
ing is turned off. After learning for the same lendgth of time as
before, the post-learning structure was 0.391, slightly worse
than before (Page C.40).

6.4 Other Experiments.

One of our experiments was designed to look into the impli-
cations of time and causality. That experiment was performed by
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partitioning five of the 8 channels of actual action potentials
from the MMEP into an X signal of dimension 4 and a Y signal
of dimension 1. We then extended the Y signal along the time
axis so that its first component was sampled at the same time as
all four of X’s components were sampled, and its next three
components were taken at three subsequent time values, so that Y
is also a four-vector. Our reasoning is that if one or more of
the X signals were to correlate with anything in Y, it would
only be seen at a later time. The situation is shown in Figure
10.

X

>
“X" halft > 1"Y" half

>

of > of
culture culture
‘ |
Y

Figure 10. Sampling Diversity in Space and in Time

The result was a DMORPH value of 0.1, which is far less than was
achieved with the simultaneous sampling in which both X and Y
were 4-vectors (DMORPH = 0.3). Similar experiments on different
segments of the MMEP data show qualitatively similar results.

We also programmed a network of Grossberg Avalanche neurons,
which learn by a form of the basic Hebb rule. We used them to
verify the basic performance of one of the avalanche architec-
tures, but due to time constraints, we did not employ these
models in any of the structure function experiments. This kind
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of experiment on these models will have to await Phase 11
research.

The results of the initial tests have been to illustrate
that the measurement of the relative entropy between two systems
is not a simple matter, as one might already guess from reading
the MAXENT literature (cf. [5]). Nevertheless, we have obtained
an algorithm which operates well within the time and memory
constraints imposed by a PC computing environment when the vector
dimension of the combined random signals from two systems is 8 or
less. This is adequate for determining the viability of the
proposed method.
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7. FINDINGS AND ANALYSIS

In the Back Propagation experiments, the structure increased
after learning, but in the Drive-Reinforcement experiments, it
actually went down afterward. Moreover, in the MMEP signal
studies we saw more structure in the simultaneous samples than in

the samples showing both spatial and temporal diversity.

These results seem ambiguous at best. In the case of the
Back Propadation experiments, the structure could hardly fail to
increase after learning, since the "desired"” output was known to
be strongly correlated with the input and the BPE network learns
to produce the desired output rather well. Tu the Drive-
Reinforcement experiments, the failure of the structure to rise
after learning is puzzling. It is clearly an indicator that the
D-R learning law does not necessarily enhance correlations
between input and output signals, but then it was not designed to
do that, at least not directly.

We devoted considerable effort to our attempts to understand
these results and to appreciate their implications for both the
design of learning laws and the optimization of architectural
parameters. Eventually, thanks to insistent questioning by our
student assistant, Mr. David Boney, we happened upon the follow-~
ing “"gedankenexperiment”, which shows very clearly that one
cannot naively infer that the best neural network is the one
wnich generates the greatest value of DMORPH between its input
vector and its output vector.

Suppose that the artificial network were constructed with an
array of "bypass valves'" corresponding to each of its inputs, and
that these valves served to proportionately disconnect the

network from its inputs and reroute those inputs directly to the
output terminals. Then, as we turned the dials we would see the
structural similarity between the input signal vector and the

output signal vector improve dramatically toward its theoretical

@
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maximum, and our inference would lead us to conclude that the
best network architecture was the one that was not there at all!

The problem is not a fault with the .tructure function, but
rather with its application and the inferences drawn from it. We
hasten to point out that what we have done in this project is to
quantify and apply concepts that many neural network and cogni-
tive science researchers have tacitly and gualitativelvy assumed
to be at work in self-organizing systems. Our experiments have
shown that these assumptions need to be much more carefully
thought out.

What, then, is the measure of a codnitive system? At the
beginning of this work, we dismissed naive self-organization --
at least as it might be measured by information-theoretic
entropy, since that clearly favors mental crystallization. We
now seem driven to dismiss, or at least to severely qualify, the
placement of any value on the network’s introduction of cross
correlations between its inputs and its outputs. Parrots are
only amusing for a short while, and networks which merely
associate "desired” outputs with selected clusters of inputs
hardly know what constitutes a surprise, much less do they have

any hope of developing an appropriate response to one.

The defect in these models, insofar as they attempt to
represent basic elements of cognitive systems, is that they pay
too little attention to the fundamental role of time and
causality. Even the conditioning models discussed by Klopf (61,
wvhich explicitly account for the temporal ordering of =vents and
the temporal gradients within excitations, and which do an
admirable job of modeling drives, reflexes, and even the act of
generalization, will probably not emerge into cognitive systems
through the blessings of mere complexity.
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Figure 11. The NMeural System Design Problem

Our experiments with time and causality discussed above have
led us to the following description of a learning system, which
pays special attention to its relationship to its environment.
Figure 11 illustrates the situation in a manner which is intended
to be especially significant to mathematicians who may have
studied category theory. Category Theorists are sometimes Known
among mathematicians as "arrow chasers”. In this case, we are
interested in the fact that there are three paths leading from
the initial state, A, of the observed system toc the final state,
B’/B", of the neural system.

One path, which we call the LL path (for Lower Left),
represents the sensors mapping the initial state A of the
observed system into an initial internal representstion A’.

Then the neural network transforms that representation into a
final state B" (which may be only an infinitesimal time, dt, away
if we think of these as differential systems).
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Another path, the UR path, represents the observed system
evolving from its initial state A to its final state B,
possibly under the influence of inputs from the outside world.
Then the sensory network maps that final state into the internal
representation, B’.

The third path, called SN (for SiNuous), represents
observation of the initial state, followed by action of the
neural system upon the observed system through motor controls,
which produces a controlled final state B. This final state is
then observed, producing the internal representation, B’.

For the moment, we shall ignore the SN path, and ask how the
network can make TFDC (an acronym known by category theorists to
mean "The Following/Foregoing Diagram Commutes"”). That is, how
can the two representations, B’ and B", be made to coincide, so
that both the LL and the UR paths produce the same result? The
answer is that it must build within itself a state transition
operator which, when composed with the effect of the sensors,
produces the same result. This is the meaning of "learning” in a
sense which makes essential use of the dynamics of the universe,
including that small part of it called the neural system. It
absolutely must employ a means of comparison between the two
representations, B’ and B". We have illustrated that comparison
by the juxtaposition of two state boxes for B’ and B", and an
arrow which returns a control signal to the current transition
operator of the network; but we do not mean to imply literally
that there must be two such "slabs" within the network together
with an explicit "metric"” between them. That may be the case,
but it may also happen that the sensory map and the cognitive
prediction converge on the same layer to produce a disturbance
away from homeostatic equilibrium at precisely those locations
harboring the pieces of the distributed transition operator which
need correcting.
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It happens that we have, in the process of analyzing these
- experiments, constructed both a neural model (a totally novel one
at that) AND an appropriate architecture to imbed it into, which
may achieve these goals. The model is highly preliminary, and
since it was conceived in the final days of analysis and report-
writing, it must be reserved for further development in the Phase
II research.

Now, let us return to the intriguing SN path. This path is

the only thing which distinguishes the cognitive system from a

mere cork on the currents of the universe. There is a technique
in the theory of the Monte Carlo method which is called "impor-
tance sampling”, in which the experimenter salts the random data
with certain rare events which are known to have an important
effect on the simulations, but which are too rare to just sit and
wait for in truly random data. In a similar fashion, a cognitive
system requires repetition in order to ferret out the associa-
tions and the invariants which it needs to build its internal
models. But novel events, by definition, do not present them-
selves at frequent intervals. Therefore, the cognitive system
must have a way to salt its observations, and it does this by
manipulating its environment to repeat the novel event or to
inspect it from a different angle so that the tentative learning
({called a hypothesis) can be tested and adjusted before it evapo-
rates. This is a necessary function of the SN path. Essential-
ly, it exists as a means to "salt" the experience of the network
and improve the efficacy of learning. But it can also serve to
drive B’ toward B" in the event that learning fails to drive B"
toward B’.

It is tempting to suggest that the entropic structure
analysis, via DMORPH, can once again be brought to bear by using

it to compare the structural similarity between the two represen-
tations, B’ and B", but this would not be appropriate. DMORPH
only applies to random vectors and ergodic stochastic processes,

whereas the comparison between B’ and B" which is used for
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! learning must be almost instantaneously computed on a sample-by-
l sample basis. It now seems that the two structures between which
DMORPH might be expected to find similarity are the state tran-
sition operator of the observed system and the state transition
operator of the neural system. In the case of an artificial
% neural network, this operator is available in the form of the
matrix of synaptic weights and the associated nonlinear transfer
characteristics, but they must be treated as random operators
(cf., Skorohod [8], for the linear case) or else the entropy will
collapse to zero. If this seems difficult to cerry out, it is no
h doubt far easier than the other half of the problem, which is to
estimate the transition operator of the observed system (except
in the most simple and controlled experimental configurations).
It may well be, as we have alluded to above, that in order to
measure the structural similarities in such complex systems, our
measurement instrument will have to contain the cognitive equiva-

lent of the system it is trying to measure.

In closing this analysis, we would be remiss if we did not
acknowledge the role of experiment in the development of our own
cognitive models of cognitive systems. We have developed a tool,
the DMORPH algorithm, which provided corrective inputs to our
models both by its success in measuring structural similarity in
random signals, and by its success in showing that such structure
is not relevant in the ways that we had presupposed when we
initiated this project. The paths to understanding are often
more sinuous than direct. We had intended that DMORPH should be
applied to the reverse-endineering of the brain in a direct,
gradient ascent assault. Instead, it is in the design and
verification of DMORPH that we found unexpected clues to the
organization of cognitive systems. We expect that this sinuous
path will now be more productive than the original plan.
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8. CONCLUSIONS AND APPLICATIONS

We are confident that cognition is simply not to be under-
stood in isclation from the essential interaction of the cogni-
tive system with the environment which it learns to comprehend.
No neural network, however complex, will exhibit cognition if it
is reledated to passive observation of its environment. The
conclusion here is perhaps the only solid confirmation of a pre-
conceived idea which we had prior to begdinning this work: It is
that significant prodress with neural networks cannot be expected
without the maintenance of close ties with biology.

This work shows the potential value of stochastic structure
analysis in the design and improvement of neural network models
and it is clear that in six months we have only begun the process
of testing and analysis of the various network designs. Now that
the software tools are available, the structural analysis
deserves to be carried out in a thorough and organized fashion on
many of the existing netwcrk architectures to determine whether
and to what degree their learning algorithms record and reproduce
the structure in the signals that they observe.

Although the DMORPH algorithm may not be applicable as
originally planned to an automatic architecture mapping scheme,
it clearly has an immediate utility for the evaluation and
improvement of neural network learning aldgorithms and transfer
equations. Our intention is to refine the algorithm (its sort
routine could be made faster and less sensitive to multiplicity
of data) and commercialize it as a utility to our commercial
neural network simulation package, SYSPROTM. Furthermore, it is
clear that we can employ both SYSPRO and DMORPH for neural
network design and evaluation for the benefit of the Air Force
and other government agdencies who must compare designs and

determine their applicability to their needs.
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Fig. A 1. MMEP 1. The lower picture shows
the entire 5 x 5 cm plate with conductors and

« amplifier contacts. The center area is enlarged and
shown on top. The 36 elcctrode are arranged in
6 rows and 6 columns with 200um and 100um spacing
respectively. Each conductor is 10 um wide and lum
thick. These plates were fabricated in 1976 free of
charge by the Siemens Corporation in Munich, Germany.
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(conductor width: 10 pm; column spacing: 40 um;

row spacing: 200pm).
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Fig. A3f\rrangcnu.n( of 1TO conductors in recording arca of multimicroelectrode plate (MMEP). The
plate was insulated with 2 pm thick layer of a polysiloxane resin and deinsulated with a single laser shot
at the end of cach conductor. Ground electrodes have received multiple deinsulation shots. Interelectrode
spacings for rows 2~6 are 100 gm between columns and 200 pm between rows. In the 1 X 1.5 mm center
recording area, the conductors are 10 pm wide and 150 nm thick,

FROM: Gross, G.W., W. Wen and J. Lin (1985). ‘Fransparent indium-tin oxide patterns for
extracellular, multisite recording in neuronal cultures. J. Neurosci. Mcth. 15: 243-252.
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2. MMEP IMPEDANCES and LASER DE-INSULATION..................... Pg A4
b Fig. A4 Shunt capacitance as a function of insulation thickness .... Pg AS
b Fig. A5  Signal transfer as a function of shunt impedance ............... Pg AS
Fig. A6  Laser deinsulation ........cocoveceeiniceiireeresressniresesesnesressessensessennes Pg AS
Fig. AT Nommal and gold plated indium-tin oxide (ITO) impedance as a
function Of CTALEr Area ......covveivvcirvecrciisresiitirstnereeararaseenes Pg A5
Fig. A8 Neurons on transparent ITO ..........ccoveviveenenceinnvnnneceieenneneens Pg A6
. Fig. A9 Recording crater geometries (ITO) ......ccccoevccnrncnnrerenenrevann - . Pg A6
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/J! Ll' Flectrode shunt capacitance (curves) in picolarads on left ﬂg- Percent of signal (£) seen by electrode tip reaching amplilier
ordinate and shunt impedancs at 1 kHz (straight lines) in megohms as a function of shunt impedance Zg and electrode impedance 7,
on the right ordinate as a function of insufation layer thickness. (1 kHz). Secrious sipnal attenuation occurs at electrode impedance
Calculations were carricd out for maximum and minimum con- above S M and shunt impedances below 30 M2, Only small im-
ductor arcas resulting from different conductor lengths situated provements in electrode performance can be expected from increasing
under the suline pooi.  Solid lines represent extreme values when the shunt impedance above 50 Mf2. Curves were calculated with an
a circular open culture chamber is utilized (27 nun diameter). Dotied amplifier input impedance (Z,) of 20 MQ (open circles) and 15 M2
lines result from the maximum conductor arca uader saline when (solid circles, with Z, equal to 5§ MQ2).

a 25 mim X 42 nun closed culture chamber is used (1-ig. 1). (Relative
diclectric constant = 4.)

SIGNAL AT AMPLIFIER (%)

Figs. A4 - A6 From: Gross, G.W. (1979).
Simultaneous single unit recording in vitro
with a photoetched laser deinsulated gold
multi-microelectrode surface. IEEEE Trans.
Biomed. Eng. BME-26: 273-279.

A (0 Laser-induced electrode deinsulation and concomitant imped-
ance change at 1 kifz. (A) Intact gold conductor 12 um wide and
2 pm thick covered with a 3-4 pm thick layer of insulation. (B)

EZO‘ o After single laser shot (337 nm, 1 x 10'% W/cm?) removed insula-
tion fragments and gold particles can be scen in vicinity of electrode

L‘IB— tip. (C) Change in magnitude of 1| kHz sinusoidal sigqal across
016 °ITO electrode at moment of laser exposure (arrow). (D) Siﬂlllflr signal
= o ® GOLD displayed after half-wave rectification on chart re;ordcr. Electrode

144 a gold plated I TO impedance decrecases from 42 MQ to .l.6 Ms2 with one laser shot
w2 A [S3) and rises slowly to 2.2 Mg within 3.5 min.
> 104 9
= P
3 .
& Fig. A7 From: Gross, G.W., W.Wen and J. Lin (1985).
o [l] . 103 Transparent indium-tin oxide patterns for extracellular,
2 = multisite recording in neuronal cultures. J. Neurosci.

24 68101214161820 24 26 30 Meth. 15: 243-252.

A ’7 Recording crater impedances as inverse functions of exposed arca in gm?® for 110, gold. and 110
that was gold plared in the crater. The lincar functions represent normalized impedances of 1130 M £2um?
for ITO and 255 M&2um® for gold. The high impedance for the FTO-clectrolyte interface may be partially
a result of further oxidation of the metal oxide during liaser deinsulation. Note that gold plating of this
interface lowers impedances to those established for gold conductors.
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. > PR i

F?”S Typical laser deinsulation patterns in well-cured polysiloxane resin. A: Nomarski micrograph

thowing shallow, 35 pm diameter craters centered on 10 um wide conductors. Note the loss of 1TO due to
the single laser shots at an energy density of 1.5 uJ/pm?. B and C: phase contrast micrographs of
deinsuiation craters formed over 30 um and 10 pm wide conductors respectively at energy densities
ranging from 1.5 10 2.2 pJ/pm?.
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fﬁj«ﬁ 9 Representative cultures of <pinad neurons growing directly on the 1TO - glass surface. IO appears
1o he noen-tonic sinee it does not interfere with cell adhesion, growth. and the development of spontancous
Cectneal achoty, A and B: manolaver culture 28 days after weeding Cand D neuron from a 6-weck-old

cultvre at magmifications of 200 and 400 respectivelv. Nuote that the 100 nm thick 11O conductors do not

interfere with the visualization of acuronal components.

rent indium-tin oxide patterns for

FROM: Gross, G.W., W. Wen and J. Lin (1985). Transpa
curosci. Mcth. 15: 243-252.

extracellular, multisite recording in neuronal cultures. J. N
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3. RECORDING CHAMBER DESIGN and ASSEMBLY ......oovoveeo, Pg A7

Fig. A10  Top and sidc vicws of chamiber ......veveeeeeeeeeeeeeeeeeee Pg A8

. Fig. All  Medium circulation SySICIN ..........ccoovs oeeeeeeeeeeeeeeeeeres Pg A8
Fig. A12  Chamber assembly c..u..iueveiueieeeeieeeereeseeeeeeee oo s Pg A9
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FIG. A10a. Top vicw of asscmbled closed chamber
and clectrode plate holder showing the
multiclectrode plate with its amplifier contact

strips (Zcbra strips) to cither side and a chamber
cover containing the observation window.

Medium changes are carried out via the two ports
adjacent to the 20mm window.

83 mm

FIG. A10b. Side view of closed chamber containing
a 20mm quartz or glass window matched to the
objective to be used. This arrangement aflows
lascr ccll surgery with Zeiss Ultrafluar x32 and
-3 x100 objectives that have working distances of
T N 0.45mm and 0.12mm, rcspectively.
j_ 'F's I \‘—' - /.. J
-~ —

3 o e
! e e
L

FROM: Gross, G.W. and M. Hightower (1986) An approach to the detcrmination of nctwork
propertics in mammalian ncuronal monolaycr cultures. In: Procecdings of the First IEEE
Conference on Synthetic Microstructures in Biological Research, Peckerar, M.C., Shamma,
S.A., and Wyatt, R.). (eds). Pp. 3 -21. Washingion, D.C.: Naval Rescarch Laboratory.

CLOSED CIRCULATION SYSTEM TO IHPRUVE
ELECTROPHYSIOLOGICAL CULTURE STABILITY

moist 1073 EDZ

FILTER
CULTURE AND RECORDING
CHAMBER
FIG. Al]. Schematic drawing showing the recording chamber and closed circulatory
system. The recording chamber contains about 300p of conditioned medium. To maintain
pH and osmolarity the medium in the recording chamber is constantly circulated through
a 10 ml reservoir of conditioned medium. Moist 1050 CO, in air is pumped into the rescrvoir

to maintain pH. An in-linc 0.22 um filter insurcs sterility in the recording chamber.
Pharmacological agents can be added to the rescrvoir and pumped 1o the chamber.
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g 4. MINICULTURES on MMEPS.........ccoiieriinericeinirencnretnenesesnseresess Pg A10 '
Fig. A13  Schcematic of recording and conditioning arcas on MMEP . Pg A10
Fig. A14 400 ncuron culturc on recording arca of MMEP 1..................... Pg All
Fig. A15 Low density culture on ITO ... Pg A12
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(a) METAL HOLDER FOR MMEP

83 mm

(b) MULTIMICROELECTRODE
PLATE (MMEP)

;’LI ; ﬂl“Ema_—_-_—Hi/ @ohesion Island

FIG.AV3. - CONFINEMENT OF NETWQRKS OVER RECORDING AREA VIA SELECTIVE
ADHESION.

The recording area (RA) is a O.5mm x imm region in the center of the
glass electrode rlate where all conductors terminate. Cultures must

be confined to this area to simplify the network analysis. The hydro-
phobic insulation material is flamed through masks to generate specific
adhesion patterns. The pattern shown consists of two "“conditioning
areas" to either side of a small (2mm diam) adhesion island (AI) cen-
tered on the recording area. The conditioning areas are necessary for
the prover development of neuronse Heuronal connections between the

threc areas do not develope Medium continuity exists at all times.

A/
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AV

Lef: Fig. Al4. Monolayer culturcs on MMEPs. A

2 mn diamceter monolayer culture centesed on the
recording matrix of a MMEP 1. Adhesion islands arc
generated on the nonmally hydrophobic insulation :
layer with a Nlaming technique through masks. Laser I
dcinsulation craters are revealed by the halos at the ’
ends of the conductors. Culture density: 400 !
ncurons/mm2, !
FROM: Sci. Amcr. 256: 62.

Bottom: Fig. A15. Center region of a culture on an
1ITO MMEP 2. Notc that the transparcnt conductors
do not interfere with microscopy. The heavy metal
plating in the crater is an artifact of the Bodian
histology mcthod due 10 precipitation of silver and
gold onto exposcd ITO. All conductors are 10 pum
widec.
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5. REPRESENTATIVE ANALOG DATA .......ccoovirrnreeneciretnesne v nnees Pg A13
Fig. A16 Muliitrace oscilloscope representation of multichannel data . Pg Al4
Fig. A17 Typical action potentials
Fig. A18 Typical burst activity
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F( H/é A. Activity patterns from one culture sampled 34 d afier sceding. The data show sequential oscilloscope sweeps (2 sec/div) stored at 40
scc intervals and do not represent simultancous activity. In this example, bursting is evident on at least 16 of 24 functional electrodes or on 16 of
20 clectrodes carrying discernible activity. The nunthers to the right of each pancl represent the row—column identifiers of each electrode. E 63
(sixth row, third column) and E 64 were Ieft insulated 10 allow a monitoring of shunt-impedance stability. The symbol x denotes electrodes inactive
because of conductor discontinuities. 8, Samples of complex single-unit bursting recorded from E 31 over a 5 min period (sweep, 5.0 sec).

FROM: Droge, M.H., G.W. Gross, M.H. Hightower, and L.E. Czisny (1986) Multiclectrode analysis
of coordinated, rhythmic bursting in cultured CNS monolayer networks. J. Neurosci. 6: ®
1583-1592.
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-~ o - . . .
.HG.H! { Characteristic action potentials and burst

patterns. (A) High frequency (500112z) burst
showing dccreasing  spike  amplitude. (B) Large
amplitude (1.6mV) action potential from the same
ncuron. (C) Small (140pV) spike rising from a
30pV  noise level.  (D&E) Simultancous burst
patteras on two clectrodes. Note constant spike
amplitude at low, and decrcased amplitudes at

high firing frequencies. Low amplitude tonic

activity from a separate unit is maintained

between bursts in (E)  Positive deflection is up in

all traces.

Gross, G.W. and M L, Hightower (1987) Multiclectrode
investigations of network properties in Neural monolayer
cultures. In: Biomedical Engincering , Recent Advances,
(R.C. Eberhardt, Ed.), McGregor and Werner, Washington;
in press.

AIG

10 CUANNEL SIMULTANEOUS
BURST DATA
Analog storage scope;
sweep: 20 ms
noise: 40V
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-

/754(8 Oscilloscope tracings from olfactory co-cultures (dissociaicd olfactory bulb cclls
culturcd with explants of olfactory ncurocpithelium) grown on MMEPs. Upper left: sustained,
rhythmic burst activity; each line contains tcn scconds of data and the average amplitude of
cach burst is 200V (peak to peak). Upper right: single unit action potential; the entire

tracing represents 20 msce and the amplitude of the action potential is about ImV (p/p).

Lower lcft: single unit action potcntial showing amplitude decay; the entire tracing

represents 10 mscc and the amplitude of the largest action potentials are about 800uV (p/p).
Lower right: expanded tracing of similar tracings to the right illustrating amplitude decay

and waveform alteration; the cntire tracing represents 50 msec and the amplitude of the

largest action potentials arc about 800uV (p/p).

A1
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6. DIGITAL PROCESSING SYSTEM.....oom e i’g Al7
Fig. A19 Present eqQUIPMENt SCLUP.......covereeeenniirenreririnesiinenisenserseossasssesrensseses Pg Al18
u Fig. A20(a) Present configuration of the Masscomp 5700 system............. Pg A19
Present Computer HardWare ....o..iecicevecnrcncnvesenneccreneesressene et ceennieseesanne Pg A20-23
Dala acqQuiSition PrOtOCOIS.....c.cvcrverreerive ittt s Pg A24
Fig. A20(b) Rcal time display Programs .........cccovveemvvermnverennnivescersesnsnsnneens Pg A25
Examples of data processing ..........cccecomnnsinien e Pg A26-29
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5 T | sseses MMEP Monitoring
1@ o 1@ 280289 Do o Hardware
Auditory Monitor LED Display 2828202

20980000

Neural Culture

i [

atch Pannel

L

N/
FET Stage Amplifiers

H

Amplifiers o \
ATETRISIRTATI

Integrators [

Q oodoonoog
OB\ =
ANV
I
00 O
-] °u°
i Qo oD

Masscomp 5700 Graphics Display Stripchart Recorder

Oscilloscope

Fig. A 19 Present data acquisition and processing sctup. The first stage amplifiers reside on the
microscope stage 1o either side to the MMEP. Second stage amps are connccted to a patch panel, to an LED
display, to an auditory monitor and to the Masscomp 5700 computer. Integrators, an 8 channel strip

chant, and oscilloscopes are serviced by the patch panel. The LED display represents the physical

layout of the electrodes on the MMEP and displays activity in a three color sequence (green - yellow -

red) depending on spike intensity. The auditory monitor is fed by the LED circuit and presents aclivity

on each clectrode as a different carrier frequency. Teh later two analog devices are very useful for
dctermining which electrodes are active and also for the recogniton of patterns,

A-19
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PRESENT COMPUTER HARDWARE

1.0 SCOPE

This document outlines the computational facilities available at the Center for Network
Neuroscicnce. The principle sysiem is a Masscomp 5700 parallel processing computer.
The Masscomp 5700 is intended for algorithm development, statistical manipulation, and
real time experiment monitoring. The center also has a MicroVax {-r experiment control
and a network of Macintosh Computers for document preparation. , -
2.0 MASSCOMP 5700

2.1 System Definition

The Masscomp 5700 is a computer mainframe capable of clustering four different types of
specialized processors. The mainframe is developed on the Motorola 68000 family of
computer processors, The processors include a standard CPU, a Data Acquisition and
Control Processor (DACP), a Pipeline Processor, and a Graphics Processor. The current
system configuration employs a single DACP and two of cach of the other processors.

The system provides access to two industry standard busses for peripherals as well as a
high-speed main bus. Multibus provides access to standard computer peripherals such as
disk drives and tapes. STD bus is used for experimental instrumentation.

2.1.1 Functional Description
2 1.1.1 The Standard CPU

Masscomp has two different modulces that can be uscd for the standard CPU. The
Center has two of the 68020 modules. The 68020 module contains a 68020 CPU,
68881 Math Coprocessor, an 8K Cache area, and a Multibus Adapter. The math
expansion module, the lightning floating point module, expands the

throughput of the math co-processor on scicntific functions. Both of the 68020
modules are equipped with the lighting boards. Each processor is capable of about
3 Mflops a sccond.

2.1.1.2 The Data Acquisition and Control Processor

The DACP is an 8 MHz bit-slice processor that is intended for realtime

operations. The DACP is located on multibus and provides an adapter to STD bus.
The DACP controls scrvice interrupts from the STD bus modules and load blocks of
read data into main memory. The center currently has four STD bus modulcs, a
clock, 1 1 MHz A/D, and two sample and hold modules.

2.1.1.3 The Pipcline Processor

The math pipcline processor uscs a 7.1 MHz adder and multiplier pipe to

provide a performance of 14.2 Mflops per second. The system has an

instruction queuc for DMA opcrations as well as for math operation. DMA can be
performed simultancously with math operations in different sections of the 128KB
of memory.

A-120
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2.1.1.4 Graphics Processor

The graphics processor accepts high level graphic commands for an Aurora
Display. The Aurora is an 1150 x 910 pixel display with 4096 display auic colors out
of a 16 million color palette. The graphics processor also controls the /O from the
Aurora keyboard and mouse.

2.1.2 Peripherals
2.1.2.1 Memory -

The system is configurcd with 8 MB of main memory and 6 MB of graphics
memory located on multibus.

2.1.2.2 Mass Slorage

The system contains two Fujitsu Eagle disk drives as the principlc mass storage
device. Each Eagle has 387 MB of disk storage. The system is also equipped with a
1/2" tape drive for doing backups and a 5 1/4" floppy disk drive for system
configuration and software updates.

2.1.23 1/O

The system has 14 RS-232 Serial Ports and an Ethemnet connection. The system
uses two of the RS-232 ports for interfacing to the NTSU broadband network for
terminal access and another RS-232 connection to a 1200 baud modem. The system
is also connected to two dot-matrix printers, and a VT 100 that serves as system
monitor.

2.2 Perfornance

Each standard CPU has a benchmark of 3300 Kwhetstones. Each pipeline processor is
capable of 14,2 Mflops sustained throughput. The combined throughput of two standard
CPU modules and two pipeline processors is estimated at 35 Mflops.

2.3 Physical Attributes

The system is housed in two cabinets. The primary cabinet houses the 30 siot frame for
Masscomp bus and multibus boards, one Eagle hard disk, and two § slot STD bus frames.

The second cabinet contains a second Eagle and a tapc drive.

2.4 Maintenance and Support

The system is maintained on a service contract that provides for replacement of defective
hardware, as well as software support and routine system maintenance.

A-l)
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3.0 MICROVAX

h 3.1 System Definition

The MicroVax was purchased to do processor control of lab equipment. The control
- process will be done through a CAMAC interface.

3.1.1 Functional Description

The system is a single board version of the Vax mainframe produced by Digital Equipment
Corporation. The system is equivalent to a 11/785 with a math co-processor with siightly
slower bus hardware.

The system is also equipped with a graphics processor with a display of 1024 x 1024 pixels.
Each pixel can be assigned one of 16 colors sclected from a 4096 color palette.

3.1.2 Peripherals
3.1.2.1 Memory
The MicroVax is configured with 3 MB of memory.
3.1.2.2 Mass Storage

The MicroVax has a 70 MB Winchester disk drive with a T50 streaming tape
backup.

3123 10

The MicroVax has two RS-232 ports and an Ethemet connection.
3.2 Performance
The MicroVax is benchmarked at 1000 kilowhetstones.
3.3 Physical Attributes
The MicroVax fits into a standard rack mount cabinet using 5" of space.
3.4 Maintcnance and Support

The system is being scrviced as nceded, with billings for time and matcrials, Software
support is being provided through campus compuicr center.

AT
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4.0 MACHINTOSH NETWORK
4.1 System Definition

The System is a network of six workstations connccted to a lascr printer. The system
provides the Center with document formating from personal computers.

4.1.1 Functional Description

4.1.1.1 Network Descriplion

The Network uscs Applenct to connect the workstations and lascr printer .

together. Applenet is a broadband network similar to ethemet with a 1/4 Mhz
bandwidth.

4.1.1.2 Workstation Description

The center has five Mac+ workstations and a Mac 2 workstation. The Mac+ is a IMB

system with a black and white screen. The Mac 2 is a color system with 16 color
pixels and a 40 MB Winchester hard disk.

4.1.1.3 Printers
The main printer is an Apple Laserwriter printer. The Laserwriter is capable of
printing at the rate of 8 pages a minute. Two workstations have 2 dot matrix
printers attached for rough drafts.

4.2 Maintenance and Support

Hardware failures are fixed as nceded. Software support is supplied by the vendor.

A-13
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Data  Acquisition

10 channels of anatop dma can be sampled at
2,000z each, Signals ae synchronized
through a pair of Sample&ilold boards. The
amdog data is then converted to digial
intonetion Aheouph o cenral 12-bit A/D. “The
combined siunpling rate is 1.728 Mbyles per
second,

Activity Detection by
an  Adaptive Threshold

Ihe compressed data are used to estimate the
noise standard  deviation, A signal threshold is
cstablished at 4 npise standard deviations.
Activity in any 1/3ms bin above this threshold
will he detected by this system. 15 values are
packed into a word for an additional 15:1
comprcssion, , -

Matched AC Filter and
DC Olflsct Adjustment

AC line aclated noise is removed by sublracting
a emplate of the line noise from the signal. The
iemplate is generated by an cexponentiatly
weighted average, and DC ollscts {from the A/D
we represepted in this average. The cnlire
vpearation 1equires an arithmatic shilt, an
increment, and two  adds.

Integration

Neurophysiologists have used integrated chart
recordings o study  burst patterns. The
integration is performed by a resistor/
capacitor nctwork. Such an R/C network is
modeled to mimic integrated activity by the
computer  soltwire using  cmpitically derived
leakage constants.

S/

Rectification and
Compression

ormation on cach channel s compressed by
reconding the maximum absolute value from the
8§ samples contained within cach 1/3ms bin.
Fhis operation results in a 81 compression.

Burst Detection

ﬁ\;mling is defected when the integrated
activity exceeds thieshold, Burst amplitude,
dutation , period, area, and other parameters
are computed and stored for stalisiical analysis
as well as a cnvclope shape classification.
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Fig. AJO Emcrging realtime display program for 36 clectrades showing spike data (top) and intcgrated data
(bottom). All clectrodes arc displayed in the lower right of the screen in a physical arrangement that mimics the
layout of the clectrodes under the microscope (MEP 1), The center of the square clectrode selection buttons will
show diffcrent colors as a function of burst intcusity (not completed). The square collar has a color code that
corresponds to Uhie trace position on the screen. Sweep speeds amd amplitudes are sclected at the bottom of the
screen. A total of 6 channels will eventually appear on the screen. Statistical paramicters such as average burst
duration, Larst period, bunst area, ind burst type (s well as various histoprams) will alse be sciectable from
the panct above the electrade mattic. Most paratneters ean be plotted as a tunction of time and will provide a
continuous 6 hour record of these patamceters.

Because of our constant exposure to multichannel data, we hove a high probability of developing realistic,
effective, operator-friendly proprams it emight he vsed for many diffesent muttichannel problems. . It is
conceivable that EEG data could be sclected in the same way Irom i brain/elect ode schematic that replaces the

6x6 clectrode matrix.
ArE
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RM/FORTRAN Compiler (VZ2.42) Page 1
Source File: DTEST.FOR Options: /BLY 02/03/88 16:25:14
“ 1 PROGRAM DTEST
2 C
° 3C PROGRAM TO TEST THE "GIBBS" SUBRDUTINE (RLD 12/02/87)
f 4 C
E 5 DIMENSION X(8,2048),Y(8,2048), TILEX(258), TILEY(2586}
8 INTEGER*2 HISTO(0:255,0:255), INDEX(2048)
7 C
: 8 CHARACTERX*S3 R4ANAMES, I4NAMES, LINAMES
9 REALX4 R4VALUE
10 INTEGER*4 I4VALUE
11 LOGICALX1 L1VALUE,QUIT, PLOT
12 C
13 COMMON /NLIST/ R4NAMES(21), I4NAMES(21), LINAMES(7),
14 i R4VALUE(21), I4VALUE(21), L1VALUE(7}
15 C
16 EQUIVALENCE (SEED, R4AVALUE(13Y), (A, R4VALUE(Z2)), (B, R4VALUE(3}},
17 1 (GOTIME, R4VALUE (4} }
18 EQUIVALENCE (NX, I4VALUE(1)}, (NY, I4VALUE(2)), (LEXP, I4VALUE(3)?},
19 2 (INSTR, I4VALUE(4)), ( IOUNIT, I4VALUE(5)), ( IC, I4VALUE(8)},
2C 2 (IPER, I4VALUE(7Y)Y, (IDU, I4VALUE(8))Y, ( IFUNM, I4VALUE(S)),
21 2 { LDBUG, T4VALUE(10})
22 EQUIVALENCE (QUIT,L1VALUE(1)}
23 C
24 C .
25 NX = 8
26 MY = 8
27 IC = 8
28 LEN = 255
29 SEED = 2.468E+12
30 A = 0.
31 B =1.
32 LEXP = IC % 2Z2xxMAX(NX,NY}
33 INSTR = 1
34 QUIT=.FALSE.
35 JOUNIT = 6
36 IDU = 0
37 IPR =0
38 IFUN =0
39 LDBUG = 0
40 C
41 R4AMAMES(1) = ’SEED’
42 R4ANAMES(2)Y = ’A’
43 R4ANAMES(3) = ’B’
44 R4NAMES(4) = *GOTIME’
45 C
46 I4NAMES(1}Y = ’NX’
47 I4NAMES(2)y = ’NY’
48 I4NAMES(3) = ’LEXP’
49 I4NAMES(4) = ’ INSTR’
50 I4NMAMES(5) = ’INPTUNIT’
51 I4NAMES(6Y = "IC’
52 T4NAMES(7)} = ’PRNTUNIT’
53 I4NAMES(8) = ’DATAUNIT®
54 I4NAMES(9) = ’IFUN’
55 I4NAMES(10}= °’LDBUG’
56 C
57 LINAMES(1) = ’QUIT’
58 C
59 NL1 = 4
60 NLZ2 = 10
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Source File: DTEST.FOR Options: /BLY 02/03/88 16:25:14
61 NLL3 = 1
. 62 TIME=0.
63 C
64 10 CONTINUE
{ 65 C
66 CALL NAMELIST(IOUNIT,NL1,NLZ2,NL3)}
67 IF(QUIT)Y STOP
68 ASEED = SEED
69 NHX = 2%%kNX-1
70 NHY = 2%xNY-1
71 NTRIALS = ©
72
73 IF(IDU.GT.O .AND. GOTIME.LT.TIME) REWIND(IDU)
74 TIME = GOTIME
75 C
78 IF(INSTR.EQ.2) THEN
77 WRITE(9, 11} (R4NAMES(I},R4VALUE(I), I=1,NL1:
78 WRITE(9, 12} (I4NAMES(I), I4VALUE(I}, I=1,NL2)
79 11 FORMAT((4(A8,’= ’,F8.4,1X)))
80 12 FORMAT({(4(28,’= ’,18,1X)))
81 END IF
gz C
83 C GENERATE OR READ THE DATA
84 . PRINT %,’ DTEST: Generating random data for X and Y.’
85 C
86 DO 20 ITRIAL = 1,LEXP
87
88 IF(IDU.LE.O) THEN
89 CALL QRX(X(1, ITRIAL),NX,Y(1, iTRIAL),6NY, A, B, ASEED, IFUM)
90 ELSE
g1 STOP ’DTEST: Real data initialization not available.’
gz ¢ CALL EDATA(X,bM, TIME, IDO)
g3 END IF
94
95 20 CONTINUE
g6
97 IF(LDBUG.GE.3) WRITE(6,902) ((XX(I,J),I=1,NX}, J=1,LEXP)}
98 902 FORMAT(8(1X,F8.5%}
g9
100 C GENERATE THE X AND Y EVENT-SPACE TILINGS
101
102 PRINT *,’ DTEST: Generating the X event-space tilings.’
103 CALL UNIVENT(X,NX, TILEX, INDEX, IC, LDBUG)
104 PRINT *,* DTEST: Generating the Y event-space tilings.’
105 CALL UNIVENT(Y,NY, TILEY, INDEX, IC, LDBUG?
106
107 C COMPUTE THE NORMALIZED STRUCTURE INDEX.
108 PRINT %*,°’ DTEST: Computing the no.malized structure index.’
109
110 DO 100 ITRIAL = 1,LEXP
111
112 CALL GIBBS(X(1,ITRIAL),NX, TILEX, ¥(1,TTRIAL),NY,TILEY, NTRIALS,
113 + HISTO, NHX,NHY, INS3TR, HX,HY.H,G,LDBUG)
114
11% IF(INSTR.EQ.2) THEN
116 WRITE(9, 101) H,HX,HY,G
117 101 FORMAT(4(F12.5,1X}}
118 END IF
119

CONTINUE
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Source File: DTEST.FOR Options: /BLY 02/03/88 16:25:14
! 121 C
h . 122 NTR = NTRIALS
) 123 CALL GIBBS(X,NX, TILEX, Y,NY,TILEY, NTR,
124 + HISTO, NHX,MHY, O, HX,HY,H,G,LDBUG)
125 C
128 IF(IPR.NE. 6} WRITE(6,901) NTRIALS, SEED, NX, NY,H,HX, HY, G
3 127 C
128 IF(IPR.GT.O) WRITE(IPR,901) NTRIA'S, SEED, NX, NY,H, BX, HY, G
129 901 FORMAT(’ DMORPH EXPERIMENT: # TRIALS = ’,I5,°, SEED = °,
130 1 F10.7,’, X-DIM = *,12,’, Y-DIM = ’, 12,
131 2 /8X,’WHOLE ENTROPY = ’',F10.7,’, X ENTROPY = ’,F10.7,
132 3 /8X,’Y ENTROPY = *,F10.7,’, DMORPH = ’,F10.7,/)
133 C
134 GO TO 10
135 END

NUMBER OF WARNINGS IN PROGRAM UNIT: O
NUMBER OF ERRORS IN PROGRAM UMIT: 0O

136 .

137 SUBROUTINE QRX(X,NX,Y,NY,A,B,SEED, IFUN)
138 DIMENSION X(NX), Y(NY)

138 C

140 DO 100 I = 1,NX

141 X(Iy = A + (B-A)YXURANF(SEED)
142 100 CONTINUE

143 C

144 DO 200 I = 1,NY

145 Y(I) = A + (B-A)YXURANF(SEED)
146 200 CONTINUE

147

148 GOTO(101, 102,103, 104) IFUN
149 GOTO 1000

150 C

151 101 CONTINUE

152 C X(4) = Y(2) + X(4)

153 GOTO 1000

154 C

155 102 CONTINUE

156 X(4) = (Y(2)Y+X(4)})/2.
157 GOTO 1000

158

159 103 CONTINUE

160 DO 1031 I=1,NX

161 1031 X{(I)} = Y(I)

162 «0TO 1000

163

164 104 CONTINUE

165 X(2)y = X(1)

166

167 1000 RETURN

168 END
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NUMBER OF WARNINGS IN PROGRAM UNIT: O
NUMBER OF ERRORS IN PROGRAM UNIT: O

169
170
i71
172
173
174
175
176
177
178
179
180
181
182
183
184
185
188
187
188
189
180
181
192
193
194
195
198
197
198
199
200
201
202
203
204
205
206
207

aaoaoaaoaaaan

10

901

20

100

1100
1200

NUMBER OF
NUMBER OF

NUMBER OF
NUMBER OF

SUBROUTIMNE RDATA(X,N, T, IDU, ITRIAL)

This subroutine reads sample data from the file FORTn, where

n = IDU. It skips all records with time-tags less than T,

reads all records with time-tags equal to the time-value first
encountered which is greater than or equal to T, and puts the
next value of the time~-tag into the T variable before returning.

If you want to interpolate or extend the data between times

4
4

existing on the file. vou mist do that external to this subroutine.

DIMENSION X(N),M(4),R(4)
IF(ITRIAL.GT.1) GOTO 20
CONTINUE

READ(IDU, 801,END=1200) TT,NX,GX, (M(I),R(I}, I=1, 4}
FORMAT(FS.3,1X,I1,1X,F8.3,1X,4(1I3,1X,F10.3, 1X))

CONTINUE
IF(TT.LT.T)Y GOTO 10

DO 100,1I=1,4
IF(M(IY.GT.O .AND. M{I).LE.N) X(M(I}Y)=R(I)

TT1 = TT

READ(1IDU, 801,END=1100) TT, NX,GX, (M(I),R(I},I=1,4)
IF(TT.EQ.TT1) GOTO 20

T =TT

CONTINUE

RETURN

CONTINUE

PRINT ¥, NO DATA EXISTS ON IMPUT DATA UNIT ’,IDU
PRINT %,’ BEYOND THE REQUESTED TIME T = ’,T

STOP

END

WARNINGS IN PROGRAM UNIT:
ERRORS IN PROGRAM UNIT:

[oNe)

WARNINGS IN COMPILATION : O
ERRORS IN COMPILATION : O
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Source File: UNIVENT.FOR Options: /BLY 02/03/88 16:24:57
1 SUBROUTINE UNIVENT(X, NX, THRESH, INDEX, IC, LDBUG)
2
T OO K AORK K S K AR JOK AR oK ok o AR A K K sk ok i K ok KK K K SIOK K o K ok 3K K ok KKK K KK K 3 K K oK K KK X AOK
4 C This routine determines the SUM (i=1,K} 2%%(I-1) threshholds
5 C which will divide the k-dimensional space into regions that
6 C will have an equal amounts of counts when the sample is
7 C drawn from the same underlying distribution which generated
8 C the c¥2**%K vectors used by this program to set the boundaries.
9 C If IC=4, K=8 and the data is found on IUNIT = 1 then the num.
10 C of threshholds which need to be found are 1+2+4+8+16+32+64+128
11 C or 255 based on the 512 data vectors.
12 Gk sk s ACA KOKIOK K KOKOK KR OICRCK SRR O sk 30OK KK KK SR K K R A KK KK K K AACK KKK SR R K R ok K ok
13
1 CAOROK o AR OK S AR KRR K RO KA R Ao oA o K A o ok A ok 3K sk K o ke oK KK IR KK 3 8 KKK KKK KK KK KO ok
15 C
16 C IC is the integer multiple of the min. # of samples{2*%¥NX),
17 C NX is the sample vector dimension.
18 C NSAMPLE = IC % 2 *x NX, is the number of samples.
19 C NTHRESH = 2 %% NX -~ 1, is the total number of thresholds.
20 C DATA(I,J), 1=1,NX ), J=1,NSAMPLE ) is the sampled data.
21 C THRESH is the array in which the thresholds are stored.
22 C LTHR is the length of THRESH and must = -1+2%%NX
23 C INDEX 1is a workspace integer array of length NSAMPLE.
24 C
25 C The callind sequence for UNIVENT is as follows;
28 C CALL UNIVENT( X, NX, THRESH, LTHR, IC )
27 C
28 CokokoROKOK K K 3 K KOK sk 3K K KKK 3 SR KR S KK S o o KO Kok 3 Ak KK SR SR OK K 30K K Sk 3 O 0K KOk KK K SR HOK
29 '
30 DIMENSION THRESH(*}
31 INTEGER*2 INDEX(*)
32
33 C NOTE: The first X-dimension (below) MUST be exactly the same as
34 C as in the calling program, even if NX may bte different!
35
36 DIMENSION X(8, *)
37
38 C If your data is integer, remove the comment from column 1
39 C of the next line of code.
40 C INTEGER DATA, DATAT
41
42
43 NSAMPLE = IC x 2 *x NX
44 NTHRESH = 2 xx NX - 1
45 C
46 C Initialize the index array.
47 C
48 IF(LDBUG.GE. 1) PRINT %, °’NSAMPLE ’,NSAMPLE, ' NTHRESH ’, NTHRESH
49
50 DO 10 I = 1 , NSAMFLE
51 INDEX(I) =1
52 10 CONTINUE
53
4 Corokokokok stk Kk 3K ROK s K o 0K KK s sk 5 ok 3K K ok sk sk O s KOK KO oKk sk sk 3Ok sk sk skt sk sk 8K KKoOK SR K ok ok ok 30K 3Kk K KOKOK
55 C
56 C For each of the NX dimensions, I, of the data vector, we
57 C determine the 2*%x(I-1) thresholds which divide the space into
58 C approximately equal (based on the sample} probability bins given
598 C that we have already divided Lhe space for all dimensions less
€0 C than I and we consider for each of the 2*x%(I-1) thresholds

-W—J
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Source File:

UNIVENT. FOR

only the sample data in one
For example, if I=1, all of

MX~-vectors.
subisets of the NSAMPLE data

with 2+¥(2-11=2 thresholds.
the sampled component.

aOaoQaOaaOOoann

NS =1
IC2PNXI
DO 130 I

IC * 2x¥(NX+1)
1, NX

(11|

JSTOP = O
ICZ2PNXI =
JSTART=

IC2PNXI/2
1-IC2PNXI

DO 120 L =

[

. NS

JSTART
JSTOP

Hon

JSTOP

IF(LDBUG.GE. 3) THEN

WRITE (6,*) *JSTART

WRITE (6,1002) (INDEX(M),

END IF

Options:

Page 2

/BLY 02/703/88 16:24:57

of the previous 2x%(I-1-1) bins.
the sample is divided into one of two

bing based on the value of the lst component of the NSAMPLE
Based on this 2%*(1-1)=1 threshold and the
value of the 2nd component of the data vectors in each of the two

points, these subsets are then divided
The threshold used is the median of

A % KKK R S R RO OR ORI OR R R ROK K IR SR R I CHOR SR b HCEOOR K R OROR K S K ok OROK K R SKOK OK K KOk Ok koK kK kK Ok

JSTART + IC2PNXI
+ ICZPNXI

*,JSTART,’> JSTOP ',JSTOP," I.L *,I,L

M=1, NSAWPLE ), 24*(I-1)+4L-1

C o e o oo KR KA ROk Sk 0K A HOK ke K ob o S HOK k  K S o KK Kk HOK HOKAOK 0k S Kk 3ok Aok Sk Kk ok %

C This code sorts the data array IDATA w.r.t. it’s Ith
C component (column) for the data values corresponding to
C INDEX{JSTART), INDEX{JSTART+1), ..., INDEX{JSTOP).
ot 0k KK Sk ROK R K K K K AR Ok sk O  oh 3 kol BOK Sk KK K Kk ok ok ok sk O KK Kk oK Kk 3ok ok Sk KKK Ok K
DO 110 J = JSTART+1, JSTOP
INDEXT = INDEX (J)
DATAT = X(I, INDEX(J))
IF(LDBUG.GE. 4)
1 WRITE (6,%) *J *,J,’ INDEXT ’,INDEXT,’ DATAT ’,DATAT
DO 100 K = J-1, JSTART, -1
IF(LDBUG.GE. 5) THEN
WRITE (6,%) ’K, DATAT, INDEX(K) ’,K,DATAT.INDEX(K)
WRITE (6,*) *X(I,INDEX(KY) ’,X(I, INDEX(K)})
END IF
IF ( DATAT .LT. X(I,INDEX(K)) )} THEM
INDEX(K+1) = INDEX(K}
INDEX(K) = INDEXT
IF(LDBUG.GE. &) THEN
WRITE (6, %) *TEST DATA < DATA ABOVE, BUBBLE UP’
WRITE (6,%) *J ’,J,’ INDEX(J)Y ’,INDEX(J)
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Source File: UNIVENT. FOR Options: /BLY 02/03/88 16:24:57

121 WRITE (6,%) K ’,K,’ INDEX(K} ’, INDEX(K)

122 END IF

123

124 ELSE

125

126 IF(LDBUG.GE. 5} WRITE (6,%) 'TEST DATA > DATA ABOVE, NEXT J’

127

128 GOTO 110

129

130 ENDIF

131

132 100 CONTINUE

133

134 110 CONTINUE

135

136 Co stk ok A kR IR K A A Ok S R ok A O KK A kO K K K 8 ROK SOH R R OR KKK b 3OK SO 5 3K OR ROk K ok ok

137 C Now use the sorted data to determine the median/threshold.

138 ook A ok ook oo oK R K K KO O S OIOK 3K K 36K KK O Ak ok ok K o ROR KOR K S ROK S ok K kK A KOk Sk Ok Kok 0Ok k

139

140 MIDINDEX = INT ( ( JSTOP + JSTART ) / 2 )

141

142 C If your data is integer, remove the comment from column 1

143 € of the next three lines of code, and comment cut the

144 C non-floated definition of THRESH.

145 C THRESH(Z24%*%(I-1)Y+L-1)=

148 C + ( FLOAT ( X(I, INDEX(MIDINDEX) ) ) +

147 C + FLOAT ( X(I, INDEX(MIDINDEX+1) } ) ) / 2.

148

149 THRESH(2**(I-1)+L-1)=

150 + ( X( I, INDEX(MIDINDEX}) ) +

151 + X( I, INDEX(MIDINDEX+1) ) ) / 2.

152

153 IF(LDBUG.GE. 3} THEN

154 WRITE (6,%x) *THRESH(’,2¥%%{I-1)+L-1,’)

155 + THRESH( 2*%x(I-1)}+4L-1)

156 WRITE (6,%) * MIDINDEX ’,MIDINDEX

157

158 WRITE (6,1002) (INDEX(M), M=1,6NSAMPLE },I,2%%(I-1)+L-1

159 WRITE (6,1001) (THRESH(M), M=1,NTHRESH )

160 END IF

161

162 120 CONTINUE

163 NS = 2#*NS

164

165 130 CONTINUE

166

187 IF(LDBUG.GE.2) THEN

168 WRITE (6,1001) (THRESH(M), M=1,NTHRESH )

169 WRITE (6,1004) ((I,J,X(J,INDEX(I})), .T=1,NX 1}, I=1,NSAMPLE )

170 END IF

171

172

173 1001 FORMAT(10(1X,F7.3))

174 1002 FORMAT(20(1X, I3))

175 1003 FORMAT( F9.0, 11X, 4 ( 1X, I3, 1X, F10.4 ) )

176 1004 FORMAT(5(1X.1I3,1X,73.1X,F7.4)) s

ad

177
178 RETURN
179 END

)
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: Source File: GIBBS.FOR Options: /BLY 02/03/88 16:24:45
' 1 SUBROUTINE GIBBS(X,NX, TILEX,Y,NY,TILEY,NTRIALS,

. 2 1 HISTO, MHX, NHY, INSTR, HX, HY, H, G, LDBUG)

3

4 C This subroutine computes three entropies associated with two
5 C random vectors X and Y, of dimensions NX and NY. H is the
6 C entropy of the concatenated vectors after NTRIALS of the ex-
7 C periment. HX and HY are the separate entropies of X and Y
8 C after MTRIALS. G = HX+HY-H 1is the Gibbs relative entropy
g C of the combined system. All entropies are computed with res-
10 C pect to the tiling of the event space specified by the TILE
11 C arrays.

12

13 DIMENSION X(NX),Y(NY), TILEX(x), TILEY(*)

14 INTEGERX2 HISTO(OQ:NHX, O:NHY)

15 PARAMETER (ALNZ2=0.6931471)

16

17 IF(INSTR .EQ. 0} GO TO 310

18 NTRIALS = NTRIALS+1

18

20 C IDENTIFY THE X-EVENT NUMBER
21
22 KX =0
23 LEVEL =1
24 _
25 DO 10 J=1,NX

28 IF( X(J) .GT. TILEX(LEVEL+KX) ) KX = LEVEL + KX
27 LEVEL = 2%LEVEL
28 10 CONTINUE

29

30 C IDENTIFY THE Y-EVENT NUMBER

31

32 KY =0

33 LEVEL =1

34

35 DO 20 J=1,NY

38 IF( Y(J) .GT. TILEY(LEVEL+4KY) ) KY = LEVEL + KY

37 LEVEL = ZxLEVEL

38 20 CONTINUE

39

40 IF(LDBUG.GE. 1} THEN

41 PRINT x,’X =’
42 PRINT *,(X(I),I=1,NX)

43 PRINT x,° X~-EVENT I.D. = ’,KX

44 PRINT *
45 PRINT x,’Y = '

46 PRINT *,(Y(I), I=1,NY)

47 PRINT x,’ Y-EVENT 1.D. = ’,KY

48 END IF

49

50 C BUMP THE COUNT FCR THE IDENTIFIED COMPOSITE EVENT

51

52 HISTO(KX,KY) = HISTO(KX,KY) + 1

53

54 IF( INSTR .EQ. 1 ) RETURN

55

&6 310 CONTINUE

57

58 C COMPUTE THE ENTROPIES ASSOCIATED WITH THE ACCUMULATED HISTOGRAM.
59

60 H = 0.
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61 HX= 0.

62 HY= 0.

63 FLN = FLOAT(NTRIALS)

64

65 DO 330 1=0,NHX

86 MARX = O

67 DO 320 J=0, NHY

68 P = FLOAT(HISTO(I,J))/FLN

69 IF(P.GT.0)Y H = H - PXLOG(P)

70 MARX = MARX+HISTO(I, J}

71 320 CONTINUE

72 PX = FLOAT(MARX})/FLM

73 IF(PX.GT.0) HX = HX - PX*xLOG(PX)

74 330 COMTINUE

75

78 DO 350 J=0,NHY

77 MARY = O

78 DO 340 1=0, NHX

79 MARY = MARY+HISTO(I, )

80 340 CONMTINUE

81 PY = FLOAT(MARY) /FLN

82 IF(PY.GT.0) HY = HY - PY4#LOG(PY}

83 350 CONTINOE

84 .

85 C COMPUTE THE NORMALIZED STRUCTURE FUNCTION

86 C G = 2.%(HX+HY - H)Y/Z( (NX+NY)*xALNZ2} [ SUPERCEDED 1]

87 HX = HX/ALNZ2

88 HY = HY/ALNZ

89 H = H /ALNZ2

90 SUPHXHY = FLOAT(MX+NY)

g1 AMINH = AMAX1(HX, HY)

92 G = (HX+HY-H)/(SUPHXHY-AMINH}

93

94 IF( INSTR .EQ. 2 ) RETURN

g5

96 C RESET THE HISTOGRAM TO ZERO FOR THE NEXT EXPERIMENT.

97

93 DO 420 I=0, NHX

99 DO 410 J=0, NHY

100 HISTO(I,JYy = O

101 410 COMTINUE

102 420 CONTINUE

103 NMTRIALS =90

104

105 RETURN

108 EMD

NUMBER OF WARNINGS IN PROGRAM UNIT: ©
NUMBER OF ERRORS IM PROGRAM UNIT: O

NUMBER OF WARNINGS IN COMPILATION : O
NUMBER OF ERRORS IN COMPILATION : O
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Source File: NAMELIST.FOR Options: /bly 02/08/88 13:50:55
1 SUBROUTINE NAMELIST(IOUNIT,N1,NZ2,M3)
2 C
. 3 C The following declarations are for local variables.
4 CHARACTER LINE*72, NAMEXS, NVAL %72
5C
6 C
7 C This program is intended to approximate tnce NAMELIST capability
8 C which some FORTRAN compilers have, but which RM-FORTRAN does not
g C have. The calling program needs to have a common block labeled
10 C /NLIST/ and containind six arrays:
11 C
12 CHARACTER*8 R4NAMES
13 REAL*4 R4VALUE
14 C
i5 CHARACTER*8 I4NAMES
16 INTEGER*4 I4VALUE
17 C
18 CHARACTER%8 LI1NAMES
19 LOGICAL*1 L1VALUE
20 C
21 COMMON /NLIST/ R4ANAMES(21), I4NAMES(21), L1NAMES(7)},
22 1 R4VALUE(21), I4VALUE(21), L1VALUE(7)
23 C
24 IF(N1.GT.21.0R.N2.GT.21.0R.N3.GT.7) THEN
25 ) PRINT %, N1 or N2 or N3 is too large for NAMELIST.’
26 PRINT ¥, ’Increase dimensions in /NLIST/ common, and’
27 print %, ’increase limits in first statement of NAMELIST.’
28 STOP
29 END IF
30 C
311 CONTINUE
32 C
33 IF(IOUNIT.EQ.6) THEN
34 PRINT %, ’ENTER VARIABLE NAMES FOLLOWED BY VALUES ACCORDING TO’
35 PRINT %, THE SYNTAX, name = value <CR>. SPACES ARE OPTIONAL.'’
36 PRINT x, ’LEGAL NAMES AND CURRENT VALUES ARE:’
37 PRINT *
38 WRITE(6,2) (R4NAMES(J),R4VALUE(J),J=1,N1)
39 WRITE(6,3) (I4NAMES(J)}, I4VALUE(J)},J=1,N2)
40 WRITE(6,4) (LINAMES(J),L1VALUE(J),J=1,N3)
41 2 FORMAT((4(2X,A8,°[’,F8.3,'1’)))
42 3 FORMAT((4(2X,A8,°’[ ’,16,’ 1’)))
43 4 FORMAT((6(2X,A8,’( ’,L1,” 1))
44 PRINT x
45 PRINT %, ’IF YOU GOOF, JUST RE-ENTER THE LINE CORRECTLY.'’
46 PRINT %, ’ANY LINE NOT HAVING THE = SIGN IN IT TERMINATES ENTRY,’
47 PRINT *, ’EXCEPT "?" DISPLAYS VALUES AND “#" STOPS THE PROGRAM.’
48 PRINT %
49 END IF
50 C
51 10 CONTINUE
52 C
53 READ(ICUNIT, 12, END=100) LINE
54 12 FORMAT(A72)
55 IF(LINE.EQ.’#’) STOP ’ x%%x User STOP in NAMELIST’
56 IF(LINE.EQ.’?’) GOTO 1
57 NEQ = INDEX(LINE,’=’)
58 IF(NEQ.EQ.0) GOTO 100
59 C IF(LINE.EQ.’QUIT’) THEN
60 C LINE="QUIT=T"’
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61 C GOTO 13
62 C END IF
63 C GOTO 100
64 C END IF
65
66 13 CONTINUE
67
68 NAME=LINE(1:NEQ-1)
69 NVAL=LINE(NEQ+1:72)
70 C
71 DO 20 I=1,N1
72 IF(NAME. EQ. RANAMES( 1)) THEN
73 IF(INDEX(NVAL,’.’).EQ. 0) THEN
74 NPT = INDEX(NVAL,'’ %)
75 NVAL(NPT:NPT) = *.°’
76 END IF
77 READ(NVAL, 15) R4VALUE(I)
78 15 FORMAT(F15.5)
79 C PRINT %, R4NAMES(I),’ = ’,RAVALUE(I)
80 C PRINT *
81 GO TO 10
82 END IF
83 20 CONTINUE
84 C
85 : DO 30 I=1,N2
86 IF(NAME.EQ. I4NAMES(I)) THEN
87 READ(NVAL, 25) I4VALUE(I)
88 25 FORMAT(1I15)
89 C PRINT %, I4NAMES(I),’ = ’,I4VALUE(I)
90 C PRINT *
91 GO TO 10
92 END IF
93 30 CONTINUE
94 C
95 DO 40 I=1,N3
96 IF(NAME.EQ. LINAMES(I)) THEN
97 32 CONTINUE
98 NDXT = INDEX(NVAL,’T’)
99 NDXF = INDEX(NVAL,'’F’)
100 IF(NDXT*NDXF .NE. O .OR. (NDXT+NDXF).EQ. 0O) THEN
101 PRINT *,NAME, IS A LOGICAL VARIABLE. ENTER TOR F > °
102 READ(6,12) NVAL
103 GO TO 32
104 END IF
105 IF(NDXT.NE.O) NVAL=’.TRUE.’
106 IF(NDXF.NE. 0) NVAL=’ . FALSE.’
107 READ(NVAL, 35) L1VALUE(I)
108 35 FORMAT(L15)
108 C PRINT %, LINAMES(I),’ = ’,L1VALUE(I)
110 C PRINT x*
111 GO TO 10
112 END IF
113 40 CONTINUE
114 C
115 PRINT %, ’VARIABLE NAME ’,NAME,’ NOT RECOGNIZED.'*
116 PRINT %, ’ INPUT CONTINUES...’ : ®
117 GO TO 1 i
118 C
119 100 CONTINUE
120 PRINT x, ’User input complete.’
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: 121 PRINT x
X 122 RETURN
. 123 END

VUMBER OF WARNINGS IN PROGRAM UNIT: O
VUMBER OF ERRORS IN PROGRAM UNIT: O

124

VUMBER OF WARNINGS IN COMPILATION :
JUMBER OF ERRORS IN COMPILATION :

oo
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Source File: HARRYNE'!.FOR Options: /BLY 02/03/88 16:23:47
1 Cx SRS SR KKK A R IR R AR K K KR ACK R SRR K KKK Ok SR R IR0 o koK KOk
2 Cx *
3 Cx * HARERERYMNET X
#Il 4 Cx * *
5 Cx & A RECONFIGURARLE 8O0-NEURON HETWORK MODEIL *
6 C# * WHICH LEARMNS BY THE DRIVE-REINFORCEMENT LAW *
7 Cx KA ORI kR SOK SRR OKCK SRR AR S KOK KHHOK K SCRCIOK S ROK KO KKK ok koK
3 Cx
9 Cx
19 SUBEQUTINE HARRYMET(T, KSROOT, KIROOT, KOROOT)
11 INCLUDE ’M\SYSPREOMNCOMMNSH. INC?
12 Cohadddkx
13 C \NSYSPRONCOMMSH. INC -~ Abbreviated labeled common arrays, for use
14 C in all subroutines except EVOLVE.
15 C NEVER CHANGE ANYTHING IN THIS FILE.
186 C Jse an INCLUDE statement to use these common arrays in any
7 C SYSPRO subroutine.
18 C
19 COMMON /STATSP/ STATEV( 1)
20 COMMOMN  /KSNAME/ KSNAME(Z, 1)
21 COMMON /INPSP / RINPUT( 1)
22 COMMOM /KINAME/ KINAME(Z2, 1)
23 COMMON /OUTP3P/ OUTPUT( 1
24 i COMMON  /KOMAME/ KONAME(Z, 1)
25 COMMOM  /OUTINT/ OUTINT(2, 1}
26 COMMON /TIME / TIME
27 CHARACTER*12 KSNAME, KINAME, KONAME, ISY3SNM*6
28 COMMON /SIMVAR/ ENDTIM,MODE, DELTAT, TIMINC, NPRINT, AUDIT, RANDOM,
29 1 NSY3, NXTSUB, ISYS(7,110), ISUB(0:220), ISYSNM(110:,
30 1 NPLOTS, NSKIP, KURVE(S, 51, NPAGE, RSMIN, RSMAX, RSEED
31 LOGICAL AUDIT, RANDOM
32 COMMON / DTG s ISEC, IMIN, IHR, IDAY, IMO, IYR,
33 1 JSEC, JMIN, JHR, JDAY, JMO, JYR,
34 1 KSEC, KMINM, KHE, KDAY, KMO, KYR
35 COMMON /TITLE / ITITLE(40,5), IDATE, ITIME
36 CHARACTER ITITLEXx2, IDATEXQ, ITIME*S
37 C
38 Cxxxxi%x END OF \SYSPRO\COMNSH. INC
39 INCLUDE ’\BPMNET\RUMDAT. INC’
40 COMMON /RUMDAT/ GAMMA(4), PARMTHR(5,0:4}
41 COMMON /NETWORK/ NUMINPT, INPUT(50), NUMNEUR, NEURN( 100},
42 1 NEDGE(2, 5100}, EDGEWT(5100),NFANIN(4, 100}
43 C
44 Chxxk
45 C COMMON /WORKSP/ W(20,9)
45 Cx . EXACTLY AS IN MAIN PROGRAM.
47 C
48 C VARIABLE NAMING SECTION
49 C K AR KK AKOK K OK HOKOK KK SHOKOKOK SRk
50 C
51 CHARACTER*12 LSYSNM
52 CHARACTER*12 1,SNAME(2, 1), LINAME(2,50), LONAME(Z, 50)
53 Cx ~n ~n .
54 Cx = KSLEN = KILENM = KOLEN
55 C
56 DIMENSION KVNDX( 3, 0:80}
57 C
58 C THE NUMBER OF SUBSYSTEMS, N = NSUBS, IS:
59 Cx v
60 DATA NSUBS / 80/
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61 C
. 62 C THE LEMGTHS OF THE "SYSMODEL" SYSTEM VECTORS (EXCLUDING
63 C SYSt - SYSM) ARE:
64 C
65 C* STATEV :: KSLEN = vv { MUST = 0 FOR COMPOSITE SYSTEM)
68 DATA KSLEMN / 0O/
67 Cx RINPUT :: KILEM = vv
63 DATA KILEN / 50/
89 Cx* OUTPUT :: KOLEN = wvv
70 DATA KOLEN / 30/
71 C
72 C THESE VALUES ARE REPORTED TO THE CALLING PROGRAM BY THE
73 C "AUDIT" SECTIOMN IF AUDIT = .TRUE.
74 C
75 C IF N>1 THEN THIS IS A COMPOSITE SYSTEM AND IT EVOLVES THE
76 C STATEV IMDIRECTLY BY FIRST EXECUTING THE CROSSTALK FUNCTIONS
77 C (Ql,...,aQN) TO ADJUST THE INPUTS TO THE SUBSYSTEMS AND THEN
73 C BY CALLING THE SUBSYSTEM MODELS (SYS1i,...,SYSN).
79 C
80 C INTERMEDIATE VALUES (NOT REQUIRED TO BE KNOWN UPOMN ANY ENTRY
81 C INTO THIS SYSMODEL SUBROUTINE) SHOULD BE EQUIVALENCED TO
82 C THE WORKSPACE VECTOR, W , TO SAVE SPACE. DO THIS NOW:
83 C
84 Cx . EQUIVALENCE ( W( 1,1), TEMP1 )
85 Cx (ETC.}
86 C
87 C STATE INPUT OUTPUT
38 DATA KVNDX/ 1,1,1,1, 51, 51,
89 1 237%0 /
80 C NOTE: The remaining components of the KVNDX array will be com-
91 C puted in the AUDIT SECTION below, on the assumption that
g2 C the NEURON subsystems each have 60 statevector components,
83 C 60 inputvector components, and 6 outputvector components.
g4 C
95 C SYSTEM NAME:
96 DATA LSYSNM/ *KLOPF’ /
7 cx . nana~n
g8 C
99 C THE LENGTH OF THE HISTORY SEGMENT FOR EACH SYNAPSE IS:
100 DATA LHIST/6/
101
102
103 C STATEMENT FUNCTION SECTION
104 C SRR OROK KK KA A KK IOROKR AR K KK
105 C
1068 C NDS(J) IS THE INDEX OF THE J-TH ENTRY OF THE STATE VECTOR
107 C OF THIS SYSTEM (I.E., RELATIVE TO KSROOT), AND SIMILARLY FOR
108 C NDI(J)Y AND NDO(J}.
109 C
110 NDS(JY = J 4+ KSROOT
111 NDI(J)Y = J + KIROOT
112 NDO(J) = J + KOROCT
113 C
114 C NRS(I) IS THE INDEX OF THE ROOT OF THE STATE VECTOR OF THE
118 C I-TH SUBSYSTEM OF THIS SYSMODEL. (ETC. FOR NRI, NRO)
116 C
117 MR5(I)Y = KSROOT + KVNDX(1,I) - 1
118 NRI(I) = KIROOT + KVNDX(2Z,I) -1
119 NRO(I)Y = KOROOT + KVNDX(3,I) - 1
120 C




RM/FORTRAN Compiler (V2.42) Page 3
Source File: HARRYNET.FOR Options: /BLY 02/03/38 16:23:47
1
L 121 C THE FOLLOWING STATEMENT FUNCTIONS SIMPLIFY REFERENCES TO THE
122 C SYSTEM VECTOR ELEMENTS. THEY MAY BE USED ONLY ON THE RIGHT
123 C SIDE OF AN ASSIGNMEMNT STATEMENT. ON THE LEFT SIDE OF AN
124 C ASSIGNMENT STATEMENT, THE FULL REFERENCE MUST BE USED.
, 125 C
126 ST(IY = STATEV(NDS(I)}
127 RI(IY = RINPUT(NDI(I})
128 OU(I}Y = OUTPUT(NDO(I))
129 STSUB(J, I} = STATEV(NRS(J)+1)
130 QUSUB(J.I) = QUTPUT(NRO(J}Y+I)
131 C
132 C S ok Ok OKKOK Sk KK K kK
133 C
134 C AUDIT SECTIONM
135 C KA K R OKOK AOK KK
136 C
137 1000 CONTINUE
138 IF(.MOT. AUDIT)Y GO TO 2000
139 C
140 IF(NUMNEUR.GT.NSUBS .OR. NUMNEUR.LT.1) GOTO 5100
141 C
142 NSUBS = NUMNEUR
143 DO 1010 I=2,MNSUBS
144 . KVNDX(1,I) = KVNDX(1,1)Y + (I-1)* 60
145 KVNDX(2,I) = KVMDX(2,1) + (I-1}* 83
146 KVNDX(3,1I) = KVNDX(3,1) + (I-1)}* 7
147 1010 CONTINUE
148 C
149 C INITIALIZE SYSTEM VECTOR LABELS
150 DO 1020 J=1, 50
151 WRITE(LINAME(1,J),1091) J
152 1081 FORMAT(’NET ’,12,’ INPUT’)
153 WRITE(LINAME(2,J),1093)
154 1093 FORMAT(’FIRING RATE ')
155 WRITE(LONAME(1,J),1095) J
156 1095 FORMAT(’NET ’,1I2,’ OUTPT’)
157 WRITE(LONAME(2,J), 1096)
158 10986 FORMAT(’>SIGNAL )
159 1020 CONTINMNUE
160 C
161 CALL SYSAUD(NSUBS, KSROOT, KIROOT, KOROOT, KSLEN, KILEN, KOLEN,
162 1 LSYSHNM, LSNAME, LINAME, LONAME )
163 C
164 C SKIP THE SUBSYSTEM CROSSTALK SECTION DURING AUDIT.
165 GO TO 3000
166 C
167 C e ok 3 KK SO K KKK K OK K AOKOK Ok
168 C
169 C SUBSYSTEM CROSSTALK SECTION
170 C K KKK IR KR CIOROR K KRR AR koK K ok R K
171 2000 CONTINUE
172 C
173 C DISTRIBUTE EXTERNAL INPUTS TO THEIR DESIGNATED SYNAPSES.
174 C
175 DO 2100 J = 1,NUMINPT
176 Y = RI(J}
177 IEDGE = INPUT(J)
178 N = NEDGE(1, IEDGE)
179 IF(N.EQ.O0 .OR. IEDGE.EQ.0) GO TO 2100
180 DO 2050 K = IEDGE+1, IEDGE+N
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|
b 181 NN = NEDGE(1,K)
182 C = DESTINATION NEURON #
- 183 KSYN = NEDGE(2,K)}
i 184 C = DESTINATION SYNAPSE # ON DEST’N NEURON
185 IF(KSYN .EQ. O) THEN
186 OUTPUT(NRO(NMN}Y+2) = Y
187 ELSE
' 188 C SHIFT PRIOR INPUTS TO RIGHT
h 189 JSYN = NRI(NN) + (KSYN-1)*(LHIST+1}
190 DO 2040 JL = LHIST,1,-1
191 JPL = JSYN + JL + 1
192 RINPUT(JPL) = RI(JPL-1}
193 2040 CONTINUE
194 RINPUT(JSYN+1) = Y*EDGEWT(K)
195 END IF
196 2050 CONTINUE
197 2100 CONTINUE
188 C
199 C WARNING: The /NETWORK/ common block viclates the system simulation
200 C rules. This network cannot be assembled into a larger
201 C system. Fold it into /RINPUT/ before trying to include
202 C BPNET into any larder SYSPRO system.
203 C
204 C . 3K KKK KOK K SK K HOK K 3K KOK K K
205 C
206 C STATE EVOLUTIOM SECTION
207 C ACHOK KR K AOK K OROKOK 3K KK KK A
208 3000 CONTIMUE
209 C
210 C
211 DO 3010 J = 1,NUMNEUR
212 CALL KLOPFON(T,NRS(J),NRI(J),NRO(J}}
213 3010 CONTINUE
214 C
215 IF( AUDIT ) RETURN
216 Cx GO TO 4000
217 C
218 C e o e ok oROK ok O 3KOK 5K 3K K oK K KOK KOk K K
219 C
220 C READOUT SECTION
221 C oY KK KOOI AR K
222 4000 CONTINUE
223 C
224 C MOTE: EACH SUBSYSTEM HAS ITS OWN READOUTS. THE ONLY READOUTS
225 C THAT SHOULD BE INCLUDED HERE ARE THOSE THAT USE STATEV
228 C COMPONENTS WHICH ARE NOT ALL MEMBERS OF A SINGLE SUB-
227 C SYSTEM STATE VECTOR.
228 C
229 C DISTRIBUTE EACH NEURON’S OUTPUTS TO THEIR DESIGNATED SYNAPSES
230 C
231 DO 4200 J = 1,NUMNEUR
232 IEDGE = NEURN(J)
233 N = NEDGE(1, IEDGE}
234 IF(IEDGE.EQ.0 .OR. N.EQ.0) GO TO 4200
235 DO 4150 K = IEDGE+1, IEDGE+N
236 IF(NEDGE(1,K).NE. O} THEN
237 DO 4130 L=1,LHIST+1
238 KL = NRI(NEDGE(1,K))Y+NEDGE(Z,K}+L-1
239 RINPUT(KL)Y = QUSUB(J,L)*EDGEWT(K)
240 4130 CONTINUE
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241 ELSE

242 OUTPUT(NDO(NEDGE(2,K})) = QUSUB(J, 1}

243 END IF

244 4150 CONTINUE

245 4200 CONTINUE

248 C

247 C

248 4999 RETURN

248 C N KN KK

250 C

251 C ERROR RECOVERY SECTION

252 C A KK KKK SR KOR KK K KK 30K K

253 5000 CONTINUE

254 C

255 5100 PRINT 5800, NUMNEUR,NSUBS

256 STOP

257 5900 FORMAT(’ SUBROUTINE BPNET - ERROR: YOU HAVE ’.I4,* NEURONS.'/
258 ) ARRAY DIMENSIONS ONLY ALLOW ’,I4,°.°,/)
259 C

260 END

NUMBEER OF WARNINGS IN PROGRAM UNIT:
NUMBER OF ERROR3 IN PROGRAM UNIT:

[oNe)

NUMBER OF WARNINGS IN COMPILATION : O
NUMBER OF ERRORS IN COMPILATION : O

|®
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Source File: KLOPFON.FOR Options: /BLY 02/03/88 16:24:08
1 Cx A K KOK kR K K AOK KO SO ROR 0K KR S K 0OKOK 3K K K K R OK S K SR OK K Ok
’ 2 Ck x *
3 Cx X KLOPTFON *
4 Cx * X
5 Cx * BASIC PROCESSING ELEMENT MODEL FOR DRIVE- *
3 6 Cxk * REINFORCEMENT NEURON MODEL FOR BIOMASSCOMP %
: 7 Cx 3 3222232332332 3233220 RN $OSY
k 8 Cx JANUARY, 1988
g Cx
3 10 SUBROUTINE KLOPFON(T, KSROOT, KIROCOT, KOROOT}
f 11 Cxxkx
12 INCLUDE ’\SYSPRO\NCOMNSH. INC’
13 Cukaokxk
14 C \SYSPRO\COMNSH. INC -- Abbreviated labeled common arrays, for use
15 C in all subroutines except EVOLVE.
16 C NEVER CHANGE ANYTHING IN THIS FILE.
17 C Use an INCLUDE statement to use these common arrays in any
18 C SYSPRO subroutine.
19 C
20 COMMON /STATSP/ STATEV( 1
21 COMMON /KSMAME/ KSNAME(Z, 1)
22 COMMON /INPSP / RINPUT( 1}
23 COMMON /KINAME/ KINAME(2, 1)
24 . COMMON /OUTPSP/ OUTPUT( 1
25 COMMON /KONAME/ KONAME(2, 1)
26 COMMON /OUTINT/ OUTINT(Z2, 1)
27 COMMON /TIME s TIME
28 CHARACTERX12 KSNAME, KINAME, KONAME, ISYSNMx6
29 COMMON /SIMVAR/ ENDTIM,MODE, DELTAT, TIMINC, NPRINT, AUDIT, RANDOM,
30 1 NSYS, NXTSUB, ISYS(7,110}), ISUB(0:220), ISYSNM(110},
31 1 NPLOTS, NSKIP, KURVE(5, 51}, NPAGE, RSMINMN, RSMAX, RSEED
32 LOGICAL AUDIT, RANDOM
33 COMMON / DTG / ISEC, IMIN, IHR, IDAY, IMO, IYR,
34 1 JSEC, JMIN, JHR, JDAY, JMO, JYR,
35 1 KSEC, KMIN, KHR, KDAY, KMO, KYR
386 COMMON /TITLE / ITITLE(40,5), IDATE, ITIME
37 CHARACTER ITITLEX2, IDATE*G, ITIME*S8
38 C
39 Cxkxkxkx END OF \SYSPRO\COMNSH. INC
40 INCLUDE ’\BPNET\RUMDAT. INC’
41 COMMON /RUMDAT/ GAMMA(4), PARMTHR(5,0:4)
42 COMMON /NETWORK/ NUMINPT, INPUT(50), NUMNEUR, NEURN( 100},
43 1 NEDGE(2, 5100), EDGEWT(5100), NFANIN(4, 100)
44 C
45 Chkx
46 Cx COMMON /WORKSP/ W(20,9)
47 Cx . EXACTLY AS IN MAIN PROGRAM.
48 DIMENSIOMN C(5)
49 CHARACTER*1 LETTER(O:5)
50 C
51 C
52 C VARIABLE NAMING SECTION
53 C K K A A A AR S HOK kAOIOK KOK K
54 C
55 CHARACTER*12 LSYSNM
56 CHARACTER%12 LSMAME(2,60), LINAME(2,63), LONAME(Z, 7)
57 Cx an ~n ~n
58 C* = KSLEN = KILEM = KOLEN
$9 C
60 DIMENSION KVNDX( 3, 1}

i\ 4
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Source File: KLOPFON. FOR Options: /BLY 02/03/88 16:24:08
61 Cx ~~" THIS NUMBER MUST = MAX(1,NSUBS)
62 C
63 Cx* EXTERNAL DIFFEQ
64 Cx ... AND ANY OTHER EXTERNAL DECLARATIONS.

65 C

66 C THE NUMBER OF SUBSYSTEMS, N = NSUBS, IS:

67 Cx v

68 DATA NSUBS / 0/

69 C

70 C THE LENGTHS OF THE "NEURON" SYSTEM VECTORS (EXCLUDING
71 C SY31 - SYSN) ARE:

72 C

73 Cx STATEV :: KSLEN = vv (TEN SYNAPSES, 6 HISTORICAL VALS)
74 DATA KSLEMN 7 80/

75 C* RINPUT :: KILEN = vv

76 DATA KILEN / 63/

77 Cx QUTPUT :: KOLEN = wvv

78 DATA KOLEM s 7/

79 C

80 C THESE VALUES ARE REPORTED TO THE CALLING PROGRAM BY THE
81 C "AUDIT" SECTIOM IF AUDIT = .TRUE.

82 C

83 DATA LETTER /'a’,’b’,’'¢c’,’d’,’e’,’ £’/

84 ‘ DATA LHIST /6/

85 C

86 C AR R AR R K K KON AR AR K K A

87 C

88 C STATEMENT FUNCTION SECTION

89 C KK K K OR K KOKR KOK KKK KKK K O K

g0 C

91 C NDS(J) IS THE INDEX OF THE J-TH ENTRY OF THE STATE VECTOR
82 C QF THIS SYSTEM (I.E., RELATIVE TO KSROOT), AND SIMILARLY FOR
83 C NDI(J} AND NDO(J}.

94 C

95 NDS(J) = J + KSROOT

96 NDI(J) = J + KIRQOT

97 NDO(J)Y = J + KOROOT

98 C

99 C

100 ST(IY = STATEV(NDS(I))

101 RI(IY = RINPUT(NDI(I)})

102 QU(I)Y = OUTFUT(NDO(I})

103

104

105 C AUDIT SECTION (Calculations needed only on first entry can
106 C HOK KK A KKK KK Kok also be inserted here.)

107 C

108 1000 CONTIMUE

109 IF(.NOT. AUDIT) GO TO 2000

110 C

111 C INITIALIZE THE SYSTEM VECTOR LABELS

112 MM = 1+KSROOT/KSLEN

113 WRITE(LSYSNM, 1090} NN

114 1090 FORMAT(’PE #’,12)

115 C

116 DO 1010 I=1,9

117 IS =1 + (I-1)YXLHIST

118 IT = 1 + (I-1)Y*(LHIST+1)

119 DO 1009 J=0,LHIST

120
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f Source File: KLOPFON.FOR Options: /BLY 02/03/88 16:24:08
121 IF(J.LT.LHIST) WRITE(LSNAME(1, IS+J),1091) I,LETTER(J),NN
. 122 1091 FORMAT(’WT ’,I1,Al1,” PE ’,I2)
123 WRITE(LINAME(1,II+4J}),1092) I,LETTER(J)},NN
124 1092 FORMAT(’INP ’,I1,Al,’ PE ’,I2)
125 IF(J.LT LHIST) WRITE(LSNAME(2, IS+J), 1093)
128 WRITE(LINAME(2, II+J),1094)
127 1083 FORMAT(’D-R SYNAPSE °*)
128 1094 FORMAT (' FREQUENCY )
129
130 IF(I.EQ.1) THEN
131 WRITE(LONAME(1, I+J), 1095} NN,J+1
132 END IF
133 1095 FORMAT(’PE ’,12,’ OUT(’,1I1,")")
134

135 1009 CONTINUE
136 1010 CONTINUE

137 C

138 C

139 CALL SYSAUD(NSUBS, KSROOT, KIROOT, KOROOT, KSLEN, KILEN, KOLEN,
140 1 LSYSNM, LSNAME, LINAME, LONAME}

141 C

142 C IMITIALIZE SOME QUANTITIES THAT DONM’'T CHANGE FROM ONE NEURON
143 C TO THE NEXT:

144 .

145 THETA = PARMTHR(1, 0}

148 C = FIRING THRESHOLD FOR ALL NEURONS3

147 DO 1200 1 = 1,5

148 C(I)Y = PARMTHR(2,I-1}

149 1200 CCNTINUE

150 C = LEARNING RATE CONSTANTS

151 WMIN = PARMTHR(3, 0)

152 C = LOWER BOUND FOR ABS(SYNAPTIC WEIGHTS)

153 OUMAX = PARMTHR(4, 0}

154 C = UPPER LIMIT FOR QUTPUT LEVEL

155 GAIN = PARMTHR(5, 0)

156 C = LEARNING RATE GAIMN FACTOR

157

158

159 C SKIP THE SUBSYSTEM CROSSTALK SECTION IN AUDIT CYCLE
160 GO TO 3000

161 C

162 C KR K HOK OK SR K KK K K

163 C

164 2000 CONTINUE

165 C SUBSYSTEM CROSSTALK SECTION

166 C 8 5k KK KR K K S K K K KK Sk K OKOK Sk kK

167 C < NONE FOR PRIMITIVE SYSTEM »

168 C

169 C

170 3000 CONTINUE

171 C STATE EVOLUTION SECTION

172 C 0K CROK SR KKK K K A K OK Ok KOk

173 C

174 C FIRST TIME THROUGH, UNDO SOME OF THE (POSSIBLY RANDOM)
175 C INITIALIZATION OF THE STATE VECTOR WHICH OCCURS AFTER
176 C THE AUDIT SEQUENCE, ERGQO, CAN’T BE DONE ABOVE.

177

178 C IF(TIME.LT. TIMINC) THEN

178 C END IF

180
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181 MM = 1 + KSROOT/KSLEN

182 C THIS IS THE NUMBER OF THE CURRENT NEURON.
183 C

184 Y = 0.

185 DO 3100 J = 1,49,LHIST

186 Y =Y + ST(IY*RI(J)

187 3100 CONTINUE

188

189 Y = MIN(OUMAX, MAX(O., Y-THETA))}

190 DY= OU(1)-Y

191

192

193 C LEARNING LAW

194 C HCACHACKOIOK K K KA 4

195 C

196 C SYNAPTIC LEARMING

197 C FOR EACH SYNAPSE (I}

198 DO 3300 I= 1.9

199 KSY = LHIST*(I-1}+1

200 KIN = (LHIST+1)%(I-1)+1

201

202 C INTEGRATE OVER THE LAG (J) TO OBTAIN DELTA W.
203 DW= 0.

204 . DO 3200 J = 1,LHIST-1

205 C {NOTE: Should go to LHIST, but that would require 7 input
206 lags, i.e., one more than there are synapse lags.)
207 DXIJ= MAX(O., RI(KIN+J}-RI(KIN+J+1) )}

208 C (this implements Klopf’s refinement on p. 13}
209 DW = DW + C(JY*ABS(ST(KSY+J)}*DXIJ

210 3200 CONTINUE

211 DW = DY*DWxGAIN

212

213 C SHIFT ALL WEIGHTS TOWARD THE PAST (RIGHT SHIFT)
214 DO 3250 J = LHIST-1,1,-1

215 STATEV(NDS(KSY+J)) = ST(KSY+J-1)

216 3250 CONTINUE

217

218 C UPDATE THE CURRENT VALUE OF THIS SYNAPSE.

219 WT = ST(KSY) + DW

220 IF(ABS(WT).LT.WMIN) THEN

221 STATEV(NDS(KSY)} = SIGN(WMIN, WT)

222 ELSE

223 STATEV(NDS(KSY)) = WT

224 END IF

225

226 3300 CONTINUE

227

228 C

229 4000 CONTINUE

230 C OUTPUT SECTION

231 C Sk AOKOK HOK KKK K Stk K

232 C

233 DO 4100 J=LHIST+1,2,-1

234 4100 OUTPUT(NDO(J}Y) = OU(J~1)

235 OQUTPUT(NDO( 1)) =Y

236

237 RETURN

238 C FAOKK Ak

239 C

240 C ERROR RECOVERY SECTION
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Source File: KLOPFOM.FOR Options: /BLY 02/03/88 16:24:08
; 241 C K K AR A KO o S A HOKOHOK KK K KOK
! 242 5000 CONTINUE
. 243 C
244 C¥ INSERT ERROR RECOVERY CODE AND MESSAGES HERE.
245 Cx WRITE TO UNIT 5 (TERMINAL) OR UNIT 6 (LOGGING FILE).
246 GO TO 3000
247 C
248 END

NUMBER OF WARNINGS IMN PROGRAM UNIT: O
NUMBEER OF ERRORS IN PROGRAM UNIT: O

NUMBER OF WARNINGS IM COMPILATION : O
NUMBER OF ERRORS IN COMPILATIOMN : ©

e . N
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Source File: HKDAT.FOR Options: /BLY 02/03/88 16:24:27
1 SUBROUTINE HKDAT(T)
2 C

E 3cC This subroutine provides the initial simulation parameters
4 C not found in the initialization TRACE file and provides for
5¢C the computation or the reading of the time-varying sensory
6 C inputs to the neural system.
7 C
8 INCLUDE ’\SYSPRO\COMNSH. INC’
9 CHkKkRK¥
h 10 C \SYSPRO\COMNSH. INC -- Abbreviated labeled common arrays, for use

11 C in all subroutines except EVOLVE.
12 C NMEVER CHANGE ANYTHING IN THIS FILE.
13 C Use an INCLUDE statement to use these common arrays in any
14 C SYSPRO subroutine.
15 C
16 COMMON /STATSP/ STATEV( 1)
17 COMMON  /KSNAME/ KSMNAME(Z, 1)
18 COMMON /INPSP / RINPUT( 1)
19 COMMON /KINAME/ KINAME(Z2, 1)
20 COMMON /QUTPSP/ OUTPUT( 1)
21 COMMON /KONAME/ KONAME(Z2, 1)
22 COMMON /OUTINT/ OUTINT(Z2, 1)
23 COMMON /TIME s TIME
24 ) CHARACTER*12 KSMNAME, KINAME, KONAME, ISYSNM*6
25 COMMON /SIMVAR/ ENDTIM,MODE, DELTAT, TIMINC, NPRINT, AUDIT,. RANDOM,
26 1 NSYS, NXTSUB, ISYS(7,110), ISUB(0:220), ISYSNM(110),
27 1 MPLOTS, NSKIP, KIJRVE(5, 51}, NPAGE, RSMIN, RSMAX, RSEED
28 LOGICAL AUDIT, RANDOM
29 COMMON / DTG s ISEC, IMIN, IHR, IDAY, IMO, IYR,
30 1 JSEC, JMIN, JHR, JDAY, JMO, JYR,
31 1 KSEC, KMIN, KHR, KDAY, KMO, KYR
32 COMMON /TITLE / ITITLE(40,5), IDATE, ITIME
33 CHARACTER ITITLE%*2, IDATE*9, ITIME*S
34 C
35 Cxoxkkx END OF \SYSPRO\NCOMNSH. INC
36 INCLUDE ’\BPNET\RUMDAT. INC’
37 COMMON /RUMDAT/ GAMMA(4), PARMTHR(5,0:4)
38 COMMON /NETWORK/ NUMINPT, INPUT(50), NUMNEUR, NEURM(100),
39 1 NMEDGE(2,5100), EDGEWT(5100), NFANIN(4, 100}
40 C
41 C
42 IF(T.GT. TIME)Y GOTO 1000
43 C
44 D PRINT 999, ’°SUBROUTINE HKDAT: READING FILE FORTZ2®
45 D 989 FORMAT( 20X, A40)
46 C
47 C READ THE SYSTEM SIGMOID PARAMETERS:
48 READ(2, 904)
43 READ(2,903) ((PARMTHR(J, 1),1=0,4),J=1,5)
50 D PRINT 903, ((PARMTHR(J,I}, I=0,4),J=1,5)
51 C
52 C READ THE NETWORK GRAPH STRUCTURE:
53 READ(2,908)
54 MAXINPUTS=50
55 MAXNEURNS=80
56 C READ THE EXTERNAL INPUT DISTRIBUTION. .. : ﬁ
57 C SO KKK SO CHOCK R ROK O 3K RO KRR sk KK K ROR KOK kK ‘]
58 NUMINPT = ©
59 IEDGE = O
60 M1X = O
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Source File: HKDAT.FOR Options: /BLY 02/03/88 16:24:27
61 500 CONTINUE
62 READ(2,907) M1,M2,M3,R4
. 63 IF(M1.EQ.0 .AND. MZ2.EQ.0 .AND. M3.EQ.0} GO TQC 600
64 IF(R4.EQ.0.) R4=1.
65 IEDGE = IEDGE + 1
66 IF(M1l EQ.M1X .OR. M1.EQ.O) THEN
87 NEDGE( 1, INPUT(M1X)) = NEDGE(1, INPUT(MIX)) + 1
68 NEDGE(1, IEDGE) = M2
69 MEDGE(2, IEDGE) = M3
70 EDGEWT(IEDGE} = R4
71 ELSE IF(M1.GT.M1X) THEM
72 NUMINPT = MAX(NUMINPT, M1)
73 INPUT(M1) = IEDGE
74 MNMEDGE(1,IEDGE) = 1
75 IEDGE = IEDGE + 1
78 MEDGE(1, IEDGE}Y = M2
77 NEDGE(2, IEDGE} = M3
78 EDGEWT(IEDGE)Y = R4
79 M1X = M1
80 ELSE
81 PRINT 909
82 STOP
83 END IF
84 _ GO TO 500
85 C
86 600 CONTINUE
87 C READ THE INTERNAL CONNECTION GRAPH STRUCTURE
88 C 3K KA HKOI R KR K K K KK IR KKK AR 3 K K Ok 33K K R oK K ok ok ok
89 READ(2, 304)
g0 MiX = O
g1 610 READ(2,907) M1,M2,M3,R4
92 IF(M1.EQ.O .AND. M2.E@.0 .AND. M3.EQ.0)Y GO TO 700
93 IF(R4.EQ.0.) Rd=1.
g4 IEDGE = IEDGE + 1
85 IF(M1.EQ.M1X .OR. M1.EQ.O0) THEN
96 NEDGE(1,NEURN(M1X}) = NEDGE(1l,NEURN(MIX)) + 1
g7 MEDGE( 1, IEDGE) = M2
98 MEDGE(2, IEDGE} = M3
99 EDGEWT(IEDGEY = R4
100 ELSE IF(M1.GT.M1X) THEN
101 NEURN(M1) = IEDGE
102 NEDGE(1, IEDGE) = 1
103 IEDGE = IEDGE + 1
104 NEDGE(1, IEDGE} = M2
105 NEDGE(2, IEDGE) = M3
106 EDGEWT(IEDGEY = R4
107 MiX = M1
108 ELSE
109 PRINT 910
110 STOP
111 END IF
112 GO TO 610
113 C j
114 700 CONTINUE
115 C DETERMINE THE NUMBER OF NEURONS IN THE METWORK
116 NUMMEUR = Mi1X 'S
117 DO 710 I=1,M1X =
118 DO 705 J=NEURN(I)+1l, NEURN(I)Y+NEDGE(1l,NEURN(I})
119 705 NUMNEUR = MAX(NUMNEUR,NEDGE(1,J}))
120 710 CONTINUE
L
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121 C

122 D PRINT *, °’NUMBER OF INPUTS = *,NUMINPT

123 D PRINT %, ’MUMBER OF NEURONS= ’,NUMNEUR

124 C

125 C CHECK FOR ERRORS IN THE METWORK ARCHITECTURE

126 IF(MUMINPT. GT. MAXINPUTS) PRINT 911, NUMINPT, MAXINPUTS

127 IF(NUMNEUR.GT. MAXNEIRNS)Y PRINT 912, NUMNEUR, MAXNEURNS

128 IF(NUMNEUR.GT. MAXNEURNS. OR. NUMINPT. GT. MAXINPUTS) STOP

129 IF(NUMNEUR.LT.M1) THEN

130 PRINT x,’ INPUT ERROR. HKDAT COUNTED TOO FEW NEURONS’

131 STOP

132 END IF

133 C

134 READ(2, 904)

135 READ(2,902) (GAMMA(I)Y, I=1,4)

136 D PRINT 902, (GAMMA(I),I=1,4)

137 I0 = 2

138 800 CONTINUE

139 € SKIP SIX LINES OF INPUT DATA UMIT (NEXT READ WILL BE OM LINE 8)

140 READ( IU, g08)

141 805 CONTINUE

142 READ(IU,901,END=1100) TT,N,G,M1,R1,M2,R2,M3,R3,M4,R4

143 IF(TT.LT.O. .AND. IU.EQ.2) THEN

144 IU = M1

145 GO TO 805

1486 END IF

147 C

148 RETUERN

149 C

150 1000 CONTINUE

151 D PRINT 913, TT

152 IF(T.LT.TT) RETURN

153 IF(N.GT.0) GAMMA(N)=G

154 IF(M1.GT.0) RINPUT(M1)=R1

155 IF(M2.GT.0} RINPUT(MZ2)Y=R2

1566 IF(M3.GT.0) RINPUT(M3)=R3

157 IF(M4.GT.0) RINPUT(M4)=R4

158 READ(IU,901,END=1100) TT,N,G,M1,R1,M2,R2, M3, R3, M4, R4

159 GO TO 1000

160 C

161 1100 CONTINUE

162 TT = 1.0E+38

183 GOTO 1000

164 C

165 901 FORMAT(F9.3,1X,I1,1X,F8.3,1X,4(13,1X,F10.3,1x)}

166 902 FORMAT( 30X, 4F10. 8)

167 903 FORMAT(20X, 5F10. 8)

168 904 FORMAT(////)

169 905 FORMAT(20X,5110)

170 906 FORMAT(///77/)

171 907 FORMAT(17,18,19,F10.4)

172 908 FORMAT(//7////7)

173 909 FORMAT(1X, 'SUBROUTINE HKDAT -- ERROR READING FILE FORT2’/

174 1 ' EXTERNAL INPUTS MUST BE LISTED IN ASCENDING ORDER’/

175 2 > EDIT FORTZ2 AND RE-RUN THE PROGRAM’//}

176 910 FORMAT(1X, ’SUBROUTINE HKDAT -- ERROR READING FILE FORT2’/ ®

177 1 ' QUTPUT NEURONS MUST BE LISTED IN ASCENDING ORDER’/ ]

178 2 * EDIT FORT2 AND RE-RUN THE PROGRAM'//)

179 911 FORMAT(’ SUBROUTINE HKDAT - ERROR: NUMBER OF INPUTS = ’,1I13,/

180 1 ’ MAXIMUM # INPUTS = ’,1I3,//}
@
—

|
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8 181 912 FORMAT(’ SUBROUTINE HKDAT ERROR: NUMBER OF NEURONS = ’,1I3,/
. 182 1 ’ MAXIMUM # NEURONS = °*.1I3,//)
183 913 FORMAT(’ HKDAT: READING INPUT DATA FOR TIME = ’,F8.3)
184 END
‘ NUMBER OF WARNINGS IM PROGRAM UNMIT: O
NUMBER OF ERRORS IN PROGRAM UNIT: O
E NUMBER OF WARNINGS IN COMPILATION 0
NUMBER OF ERRORS IN COMPILATION 0
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APPENDIX C

DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 1
DATE: 1/11/88
INPUT CONDITIONS: Two random variables with two components
each. No correlations between the variables.
VARIABLES:
SEED: .247E+13 LEXP: 6000
NX: 2 NY: 2 IC: 8
A 0.0 B: 1.0 IFUN: 0
X ENTROPY: 1.9574733 Y ENTROPY: 1.9515425
DMORPH: 0.00115486 WHOLE ENTROPY: 3.9066575
COMMENTS:

FILE: FORTY; ROUS: 1 TO 1586 ; PLOT OF TRIAL Vs, WH. ENTROPHY ———

¥ ENTROPHY ... X
Y ENTROPHY -~ &

3.92 7 ppmartT + i + + DMORPH— ... #*-

3.48 1

3.85 S

2.61 4

2.18 4

rtzwﬂe*s~==§=¥===8*£& c; e = 52 = 1

1.74 -;

1.31

8.87 |

0.44

880

1.8 167.6 334.1 588.7 667.2 833.8 1089.3 1166.9 1333.4 1560.8
TRIAL
Page C.1
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| APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 2
DATE: 1/13/88
INPUT CONDITIONS: Two random variables with four components
each. No correlations between the variables.
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 0
X ENTROPY: 3.86821 Y ENTROPY: 3.96083
DMORPH : 0.01346 WHOLE ENTROPY: 7.77527
COMMENTS :
FILE: EXP2.DAT; ROUS: 1 TO 1588 ; PLOT OF TRIAL vs. WH. ENTROPHY ——
¥ ENTROPHY ... x.
¥ ENTROPHY - ¢
2. 69T ot ——~+ DMORPH— i~
.83 -
5.98-J
5.12 4
4.2?— o 3 3 £
3.42 4’
3
2.56 4
1.74
8.85
"M\-wﬁ__ % “ . . " o 4
0.88 T T T t —# Y I T Al
1.8 167.6 334.1 5P@.7 667.2 833.8 1608.3 1166.9 1333.4 15068.0
TRIAL
@,
Page C.2
.1
-




APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
. EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
4 EXPERIMENT #: 3
L DATE: 1/13/88
INPUT CONDITIONS: Two random variables with six components
each. No correlations between the variables.
VARIABLES:
i SEED: .247E+13 LEXP: 3000
NX: 6 NY: 6 IC: 8
A: 0.0 B: 1.0 IFUN: 0
X ENTROPY: 5.87292 Y ENTROPY: 5.89273
DMORPH : 0.30636 WHOLE ENTROPY: 9.89462
COMMENTS:
FILE: EXP3.DAT; ROUS: 1 TO 1588 ; PLOT OF TRIAL vs. UH. ENTROPHY ——
% ENTROPHY  ...x
¥ ENTROPHY - g
18.89 1 .,,,.P—f-——”“—+ DMORPH— -
8.97 -
7.85 -
6.731
5.61 4 o= - = -
4.48 - .
3.36 f
2.24 |
1.12
——— ey + " »
I 63 ~¥: ¥ = ¥ % ¥
0.68 T —T T T T T T T |

1.8 167.6 334.1 568.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8

\..d

Page C.3




APPENDIX C

PROJECT:
EXPERIMENT:

RESEARCHER:

EXPERIMENT 4:
DATE:

INPUT CONDITIONS:
each. No correlations

m

DMORPH EXPERIMENTS AND GRAPHS

BIOMASSCOMP
DMORPH Characterization

David G. Boney

4
1/13/88

Two random vectors with eight components
between the variables.

VARIABLES:

SEED: .247E+13 LEXP: 3000

NX: 8 NY: 8 IC: 8

A: 0.0 B: 1.0 IFUN: 0

X ENTROPY: 7.82463 Y ENTROPY: 7.82070
DMORPH: 0.53758 WHOLE ENTROPY: 11.26581
COMMENTS:

FILE: EXP4.DAT; ROUS: 1 TO 1588 ; PLOT OF IRIAL

vs. UH. ENTROPHY —

X ENTROPHY ... X
¥ ENTROPHY - 8.
18.51 1 DMORPH— ...y
9.34 1
8. 18 1 ) N
7.81 4
5.84
4.67 4
3.58 -
2.34 |
1.17
* *- * * * He %
0.00
T i U T T T T T 1
1.8 167.6 334.1 588.7 667.2 833.8 1808.3 1166.9 1333.4 1508.8
TRIAL
Page C. 4
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 5
DATE: 1/15/88
INPUT CONDITIONS: Two random variables with four components
each. Intravariable correlation, x(1) = x(2}).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 1
X ENTROPY: 3.8682065 Y ENTROPY: 3.9612269
DMORPH: 0.013411 WHOLE ENTROPY: 7.7752690
COMMENTS :
FILE: EXPS.DAT: ROUS: 1 TO 15@@ ; PLOT OF TRIAL vs, UH. ENTROPHY ——
¥ ENTROPHY ...x.
] ¥ ENTROPHY - g
6.83
5.98 -
5.12 4
4.27 -
ey a A £ £ —5
(pe
3A27g
2.56 4
1.71
9.8
e, .
8.60 \\f““?"—“‘—:# —g——t S — %

1.8 167.6 334.1 508.7 667.2 833.8 1806.3 1166.9 1333.4 1580.8
TRIAL

i®
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 6
DATE: 1/15/88
INPUT CONDITIONS: Two random variables with four components
each. Two intravariable correlstions, x(1) = x(2), y(1) = ¥(2).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 2
X ENTROPY: 3.8836992 Y ENTROPY: 3.9413996
DMORPH: 0.0136949 WHOLE ENTROPY: 7.7695165
COMMENTS:
FILE: EXP6.DAT; ROUS: 1 TO 1588 ; PLOT OF TRIAL Vs, WH. ENTROPHY ——
¥ ENTROPHY ... x
) U ENTROPHY - g
2.78 : ' — DMORPH—— -
/_,__4—-“*' 2
6.85 -
5.99 -
5.13 4
4.28 -
3.42 4
2.57 4
1.71 ]
8.86 _
e . ) . o
L i e %
1.9 167.6 334.1 568.7 667.2 833.8 1668.3 1166.9 1333.4 1508.8
TRIAL
Page C.6
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 7
DATE: 1/15/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1} = ¥(1).

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 3

X ENTROPY: 3.9319389 Y ENTROPY: 3.9612269
DMORPH : 0.2537242 WHOLE ENTROPY: 6.8684316

COMMENTS :

FILE: EXP?.DAT; ROUS: 1 TC 1588 ; PLOT OF TRIAL vs.  UH. ENTROPHY
X ENTROPHY  ..x.
Y ENTROPHY - &
¢ + DMORPH e

6.82 1

6.086

5.31 1

4.55 A

]
&
]

3.79 4 :
3.83 §f
2.27 |
1,52 |

8.76 |

T
*
E 3

8.09

1.9 167.6 334.1 588.7 667.2 833.8 1808.3 1166.9 1333.4 1500.8
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m APPENDIX C

DMORPH EXPERIMENTS AND GRAPHS
PROJECT: BIOMASSCOMP
_ EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 8
DATE: 1/15/88
INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1) = -y(1).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 4
X ENTROPY: 3.9063108 Y ENTROPY: 3.9612264
DMORPH: 0.2536734 WHOLE ENTROPY: 6.8430085
COMMENTS:
FILE: EXP8.DAT; ROUS: 1 TO 1580 : PLOT OF TRIAL vs. UH. ENTROPHY ——
X ENTROPHY ... X
, Y ENTROPHY - &
6.81 e p— DMORPH— ¥
6.05 -
5.29 1
4.54 - j
P I WV - S— 1 == =2 = ]
3.78 4 {(}r;,d'"
3.92 -
2.27
1.51
" \w——-—*—“#—
8.%e r T T l ﬁ; “r —r ; ﬂl 1!
1.8 167.6 334.1 508.7 667.2 833.8 19096.3 1166.9 1333.4 1500.8
TRIAL
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APPENDIX C

DMORPH EXPERIMENTS AND GRAPHS

PROJECT:
EXPERIMENT:

RESEARCHER:

EXPERIMENT #:
DATE:

INPUT CONDITIONS:

each. One intervariable correlation, x(1) = .5 - (y(1} - .5).
VARIABLES:

SEED: .247E+13 LEXP: 3000

NX: 4 NY: 4 IC: 8

A 0.0 B: 1.0 IFUN: 5

X ENTROPY: 3.9063108 Y ENTROPY: 3.9612269
DMORPH: 0.2536734 WHOLE ENTROPY: 6.8430085
COMMENTS:

FILE: EXP3.DAT; ROUS: 1 TO 1588 ; PLOT OF TRIAL

BIOMASSCOMP
DMORPH Characterization

David G. Boney

9
1/15/88

Two random variables with four components

vs. WUH. ENTROPHY —p—

X ENTROPHY ... ¥
¥ ENTROPHY - g
6.81 7 — —+ DMORPH—— -
6.85 1
5.29 -
4.54 4
3.78 Hlr S S Ea =5 R
3.82
2.27 1
1.51 ]
8.?6-‘\%&;
&Bﬁr * —k ¥ * - F—— % *
i J T T | L L !
1.8 167.6 334.1 500.7 667.2 833.8 1868.3 1166.9 1333.4 1500.0
TRIAL
®
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APPENDIX C

DMORPH EXPERIMENTS AND GRAPHS

PROJECT:
EXPERIMENT:

RESEARCHER:

EXPERIMENT #:
DATE:

INPUT CONDITIONS:

each. One intervariable correlation x(1) = 10 x y(1).

VARIABLES:

SEED: .247E+13 LEXP: 3000

NX: 4 NY: 4 IC: 8

A 0.0 B: 1.0 IFUN: 6

X ENTROPY: 3.9319389 Y ENTROPY: 3.9612269
DMORPH - 0.2537242 WHOLE ENTROPY: 6.8684316
COMMENTS:

FILE: EXP18.DAT; ROUS: 1 TO 1508 ; PLOT OF TRIAL

&821
6.86
5.31 4

4.55 4

BIOMASSCOMP
DMORPH Characterization

David G. Boney

10
1/15/88

Two random variables with four components

WH, ENTROPHY ——
¥ ENTROPHY
¥ ENTROPHY
DHORPH—

vs.
..... -
-8
e

79 e
.83
27
52 ]

.76

[19]
o
i1}
Fi o
#h

>

3 ¥
»: Y.

*

)
B

1 T

1.8 167.6 334.1

")
¥
]

500.7 667.2

T i T

833.8 1A68.3 1166.9 1333,4 1500.8

TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 11
DATE: 1/15/88
INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1) = .1 % y(1).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 7
X ENTROPY: 3.9319389 Y ENTROPY: 3.9612269
DMORPH : 0.2537242 WHOLE ENTROPY: 6.86843186
COMMENTS:
FILE: EXP11.DAT; ROUS: 1 T0 1588 ; PLOT OF TRIAL vs, UH. ENTROPHY ——
¥ ENTROPHY ... 'S
) Y ENTROPHY - g
6.82 1 U —t + —+ DMORPH— ... *-
g
6.86
5.31 -+
4,55 S
179J'ﬁﬂ?’ B -G L & = S R
3.83 4f
2.2?.1
1.52
8.76 4.
fk\\**—' * ¥ * * ¥ % * *
8.08 T T T T T T T T 1
1.8 167.6 334.1 508.7 667.2 833.8 1808.3 1166.9 1333.4 1560.80
TRIAL
[ ]
L
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
EXPERIMENT: DMORFPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 12
DATE: 1/15/88
INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x{(1)} = y(1) + y(2).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 8
X ENTROPY: 3.8949640 Y ENTROPY: 3.9612269
DMORPH: 0.1347252 WHOLE ENTROPY: 7.3120666
COMMENTS:
FILE: EXP12.DAT; ROUS: 1 TO 1508 ; PLOT OF TRIAL vs. UH. ENTROPHY ——
¥ ENTROPHY X
) Y ENTROPHY - g
7.25 — + DMORPH— -
6.44 -
5.644
4.83 - /
4-63"- vy P -~ N -y 3 3 ﬁ'._b "H ﬁ!'.\‘
o> e '
3.22 4/
2.42 |
1.61
8.81 |
{\\‘“ﬁ*———=% ¥ * o x ¥ ¥
0.00 T T T T T —T T T \
1.8 167.6 334.1 508.7 667.2 833.8 1608.3 1166.9 1333.4 1560.9
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
- EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 13
DATE: 1/15/88
INPUT CONDITIONS: Two random variables with four components
each. One intercorrelation, x(1) = y(1) % y(2).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A 0.0 B: 1.0 IFUN: g
X ENTROPY: 3.9062233 Y ENTROPY: 3.9612269
DMORPH : 0.122984 WHOLE ENTROPY: 7.3707037
COMMENTS:
FILE: ENP13.DAT; ROUS: 1 TO 1588 ; PLOT OF TRIAL vs. UH. ENTROPHY ——
¥ ENTROPHY o
_ Y ENTROPHY - g
7‘33.‘ DMORPH— ...
6.49 -
5.68 -
[4
4.8?#/
4.86-‘ o fa = == =5 =5 =5
i
3.25 4
2.43 4
1.62 ]
g.81
0.8 F\““ﬁk—~—4h— — * — ¥ ¥ * —¥
* Y T T T T T T T 1
1.8 167.6 334.1 588.7 667.2 833.8 1908.3 1166.9 1333.4 1566.8
TRIAL
D,
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| APPENDIX C
{ DMORPH EXPERIMENTS AND GRAPHS
\
PROJECT: BIOMASSCOMP
i EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 14
DATE: 1/15/88
INPUT CONDITIONS: Two random variables with four components
each. Two intervariable correlations, x(1) = y(1) + y(2), y(3) =
x(3) + x(4).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 10
X ENTROPY: 3.9319389 Y ENTROPY: 3.92186778
DMORPH : 0.3654028 WHOLE ENTROPY: 6.3671360
COMMENTS :
FILE: EXP14.DAT; ROUS: 1 TO 1588 ; PLOT OF TRIAL vs. UH. ENTROPHY ——
¥ ENTROPHY ... X-
Y ENTROPHY - g
5.63
4.93 -
4.22 4
a— BN —& & 8
3.52 4t
2.82 4
2.11 ]
1.41 |
8.708
_.*r‘\-—:( Y w 3 . ") "™ & ¥
F B3 L3 B0 - Do P *
8.08 T T T T T — T T 1
1.8 167.6 334.1 588.7 667.2 833.8 1806.3 1166.9 1333.4 1568.0
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 15

DATE: 1/15/88

INPUT CONDITIONS: Two random variables with four components

each. Two intervariable correlations, x(1) = y(1) x ¥(2), y(3) =
x(3) % x(4).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 11

X ENTROPY: 3.8062233 Y ENTROPY: 3.98316173
DMORPH : . 2310253 WHOLE ENTROPY: 6.8979411

COMMENTS :

FILE: EXP15.DAT; ROUS: 1 TO 1588 ; PLOT OF TRIAL vs.  UH. ENTROPHY ——
® ENTROPHY  ....x

: ¥ ENTROPHY - g

6.84 - — s —+ DMORPH— ... -

6.688 -

5.32 4

4.56

3.88 4

3.84
2.28
1.52

8.76

3[
K
#

D S .- 59 ) ¥
B Ea L3 > x —¥

T 1 1 ! 1 1 t 1 1

1.8 167.6 334.1 560.7 667.Z2 B833.8 1868.3 1166.9 1333.4 1588.8
TRIAL
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r. APPENDIX C
' DMORPH EXPERIMENTS AND GRAPHS
PROJECT: BIOMASSCOMP
_ EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
]
EXPERIMENT #: 16
DATE: 1/18/88
INPUT CONDITIONS: Two random variables with four components
each. Two intervariable correlations, x(1) = y(l1), x(2) = y(2).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 12
X ENTROPY: 3.9312069 Y ENTROPY: 3.9612269
DMORPH: 0.4973724 WHOLE ENTROPY: 5.8836598
COMMENTS:
FILE: EXP16.DAT; ROUS: 1 TO 1588 ; PLOT Of' TRIAL vs. WUH. ENTROPY ——
¥ ENTROPY ... X
. ¥ ENTROPY -8
5.85 . + ' + + PMORPH— -
5.28 1
4.55 1
3.984'$ﬂ?v o e -5 i ==t meri = =
3.25 dF
2.68 S
1.954
1.30 ]
8.65 4.
‘: Ml S # ¥ —4 < - ¥ # —¥
p.09
1 T T ¥ T R T 1] )
1.8 167.6 334.1 508.7 667.2 833.8 1860.3 1166.9 1333.4 15¢0.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
R EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 17
DATE: 1/18/88
INPUT CONDITIONS: Two random variables with four components
each. Three intervariable correlation, x{(1) = y(1}, x(2) = y(2),
x(3) = y(3).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 13
X ENTROPY: 3.8895742 Y ENTROPY: 3.9612269
DMORPH : 0.7411187 WHOLE ENTROPY: 4,8575912
COMMENTS :
FILE: EXP17.DAT; ROUS: 1 TO 15688 ; PLOT OF. TRIAL vs, UH. ENTROPY ——
X ENTROPY ... x*-
_ Y ENTROPY - @
4.86 1 /\,vf + + —4 —+ DNORPH— ... *-
4.3z~/
R Lo — .
4
3.24 4
2.79 4
2.16
1.62 4
1.08
854_?"*'% * X * % ¥ % %
8.00
i 4 1 1 T T 1 1 i
1.8 167.6 334.1 500.7 667.2 833.8 1808.3 1166.9 1333.4 1500.0
TRIAL
Page C.17
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 18

DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components

each. Four intervariable correlations, x(1) = y(1), x(2) = ¥(2},
x(3) = y(3), x(4) = y(4),

VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 14
X ENTROPY: 3.9612269 Y ENTROPY: 3.9612269
DMORPH : 0.9807996 WHOLE ENTROPY: 3.9612269
COMMENTS :
FILE: EXP18.DAT; ROUS: 1 TO 1508 ; PLOT OF TRIAL vs.  UH. ENTROPY ——
X ENTROPY ... X
. Y ENTROPY - 3.
3.957 !~Nf/~—a¥~F—~——€¥ﬁ+——+~£+——H———4}———%6——6——+——*—{}————+ DMORPH—E ... *.
3.52 A
3.68 4
2.64 -
2.20 4
1.76 4
1.32 -
9.88 _\,_,,,..n—k-—-———-% —¥- #* * ¥ H— *
&44J5
9.00 T T =T T ¥ T T T
1.8 167.6 334,1 5@8.7 667.2 833.8 1888.3 1166.9 1333.4 1508.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 19
DATE: 1/18/88
INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1) = .1 % y(1) + .9 x
y(2).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 15
X ENTROPY: 3.8948736 Y ENTROPY: 3.9612269
DMORPH : 0.2156875 WHOLE ENTROPY: 6.9849877
COMMENTS:
FILE: EXP19.DAT; ROUS: 1 TO 1508 ; PLOT OF TRIAL vs. UH. ENTROPY ——

¥ ENTROPY ... X

Y ENTROPY -a-
6.92 - . —— — DMORPH—— ...

)
5.39 -
4.62
3.85 | ryermimrm et Bemmte——"
3.88 4§
2.31 .
1.54
8.77
jp\\‘#5-—ﬁF—w—ﬁk———ﬂ#A ¥ ¥ % * ¥
B.BB Y T T T T T T T i
1.0 167.6 334.1 588.7 667.2 833.8 1889.3 1166.9 1333.4 1590.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 20
DATE: 1/18/88
INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1) = .2 % y(1) + .8 %
y(2).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 I1C: 8
A: 0.0 B: 1.0 IFUN: 16
X ENTROPY: 3.8984380 Y ENTROPY: 3.9612269
DMORPH : 0.1874058 WHOLE ENTROPY: 7.1027756
COMMENTS :
FILE: EXP29.DAT: ROUS: 1 TO 1588 ; PLOT OF TRIAL Vs, UH. ENTROPY ——
® ENTROPY ... -
) ¥ ENTROPY -8
7_95-1 -+ + DMORPH—
6.26 1
5.48
4.?97
192-uv,r=ax B e R e e B )
313
2'35T
1.57 ]
8.78
i{\
\““*%~—-*——~—*——— S ¥ ¥ ¥ ¥ —¥
8-88 T T T T T T T 1 1
1.8 167.6 334.1 569.7 667.2 833.8 1800.3 1166.9 1333.4 1560.9
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 21
DATE: 1/18/88
INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1} = .3 * y(1) + .7 %
y(2).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 17
X ENTROPY: 3.8973515 Y ENTROPY: 3.9612269
DMORPH : 0.1651944 WHOLE ENTROPY: 7.1913958
COMMENTS :
FILE: EXP21.DAT; ROUS: 1 TO 1588 ; PLOT OF TRIAL vs. UH. ENTROPY ——
¥ ENTROPY ... -
‘ Y ENTROPY - 4
7.13 1 +— * DHORPH—  .y:
¢34 /”/—V—’—‘—‘,
5.55 4
4,75 4
3'%‘{,@-«'“-% P i e == 2
3.17 4f
2.38 4
1.58 ]
9.79 |
8.90 ;\\"“*—* '3 —— % * — * * %
T L T ] T 1 1 1 !
1.8 167.6 334.1 508.7 667.2 833.8 1888.3 1166.9 1333.4 1566.6
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 22
DATE: 1/18/88
INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1) = .4 % y(1) + .6 %
y(2).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 18
X ENTROPY: 3.8918359 Y ENTROPY: 3.9612269
DMORPH: 0.1431046 WHOLE ENTROPY: 7.2750959
COMMENTS :
FILE: EXP22.DAT: ROUS: 1 TO 1588 ; PLOT OF TRIAL vs, WH. ENTROPY ——

¥ ENTROPY ... X-

¥ ENTROPY - g
2.24 1 DMORPH— - -
6.41
5.61
4.81 A
4.81 5 a
3.20 4}
2.40 |
1.69 ]
8.80 | \F

1.8 167.6 334.1 588.7 667.2 ©833.8 1868.3 1166.9 1333.4 1566.9
TRIAL
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APPENDIX C

DMORPH EXPERIMENTS AND GRAPHS

PROJECT :
EXPERIMENT:

RESEARCHER:

EXPERIMENT #:
DATE:

INPUT CONDITIONS:

BIOMASSCOMP
DMORPH Characterization

David G. Boney

23
1/18/88

Two random variables with four components

each. One intervariable correlation, x(1) = .5 % y(1) + .5 %

y(2}.
VARIABLES:

SEED: .247E+13 LEXP:
NX: 4 NY:
A 0.0 B:

X ENTROPY:
DMORPH :

COMMENTS :

FILE: EXP23.DAT; ROUS: 1 TO 15@8 ; PLOT OF TRIAL vs.

5.64 1 /

4.83

3.8949640
0.1347252

3000
4 1C: 8
1.0 IFUN: 19

Y ENTROPY:
WHOLE ENTROPY:

3.9612269
7.3120666

UH. ENTROPY ——
X ENTROPY - X
¥ ENTROPY -8

?7.25 7 //_/_,,,.,.-»'————*—* - +————————+ DHORPH— %
6.44

4.03 e

B =
3.2z
2.42 |
1.61 ]

8.81

¥ «
\\_ﬂh w
—¥-

P
4

8.e8 . T

a3 e e ¥ & Y
Gl X ¥ £ n3 ¥
T i 1

) 1 T

1.8 167.6 334.1 588.

T T

7 667.2 833.8 1009.3 1166.9 1333.4 1568.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 24
DATE: 1/18/88
INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1) = y(1) + y(2) + ¥(3).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 20
X ENTROPY: 3.9074244 Y ENTROPY: 3.9612269
DMORPH : 0.1411841 WHOLE ENTROPY: 7.2984409
COMMENTS:
FILE: EXF24.DAT; ROUS: 1 TO 1568 ; PLOT OF TRIAL vs. UH. ENTROPY ——
¥ ENTROPY K-
. Y ENTROPY -8
6.45 e
5.64
4.83 -
.83 (=W Fa) o . N /_:_ 2
R
3.22 ¢
2.42 4
1.61 ]
2.81 _
f‘\;‘ * > . -« - 3 ) ¥
9.00 - . Rl d K B 7 T \
1.8 167.6 334.1 580.7 667.2 833.9 1866.3 1166.9 1333.4 15680.08
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 25

DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components

each. One intervariable correlation, x(1) = ( ¥(1) + y(2) + y(3)
y / 3.

VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 21
X ENTROPY: 3.9074244 Y ENTROPY: 3.9612269
DMORPH : 0.1411841 WHOLE ENTROPY: 7.2984409
COMMENTS :

FILE: exp25.dat; ROUS: 1 TO 1588 ; PLOT OF TRIAL Vs, UH. ENTROPY ——

¥ ENTROPY RS
¥ ENTROPY -8

7.251 W DHORPH— -

6.45

5.64 -

4.83-1

4.03 5 o PR - I

'fl‘»" L ra ~

3.224

2.42 4

1.61 |

8.81 | .

) T T T T T T T T ]
1.8 167.6 334,14 5@8.7 667.2 933.8 10068.3 1166.9 1333.4 1560.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS
F
: PROJECT: BIOMASSCOMP
i. EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 26
DATE: 1/18/88
INPUT CONDITIONS: Two random variables with four components
each. One intervarieble correlation, x(1) = y(1) + ¥y(2) + y(3) +
y(4) .
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 22
X ENTROPY: 3.8960431 Y ENTROPY: 3.9612269
DMORPH: 0.1365768 WHOLE ENTROPY: 7.3056674
COMMENTS:
FILE: EXP26.DAT; ROUS: 1 T0 iS@@ ; PLOT OF TRIAL vs. UH. ENTROPY ——
¥ ENTROPY e X
. Y ENTROPY - 3.
7.26 7 — ‘L —+ DMORPH—— %
6.45
5.65
4.94 -
4.83 - e o P . - o
T B3¢ Tz =3
3.23 )/
2.42 /|
1.61
8.81
.88 R * X *- " * ¥ «
T T T T T T T I 1
1.8 167.6 334.1 568.7 667.2 833.8 1808.3 1166.9 1333.4 1568.60
TRIAL
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT:
EXPERIMENT:

RESEARCHER:

EXPERIMENT #:
DATE:

INPUT CONDITIONS:

each. One intervariable correlation,

BIOMASSCOMP
DMORPH Characterization

David G. Boney

27
1/18/88

Two random variables with four components
x{(1) = (y(1)Y + y(2) + y(3) +

y(4)) / 4.
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFON: 23
X ENTROPY: 3.8960431 Y ENTROPY: 3.9612269
DMORPH: 0.1365768 WHOLE ENTROPY: 7.3056674
COMMENTS:
FILE: EXP27.DAT; ROUS: 1 TO 1580 ; PLOT OF TRIAL vs, WH., ENTROPY ——
® ENTROPY ... X
) ¥ ENTROPY -8
.26 7 P, a —~+ DMORPH— ... ¥
5.65 - /'
&841/
4'63-1("?,:/' < Bt a8 G et R—f= = £
3.23]);
2.42 4
1.61 4
8.81
["“\-"V'_ e ¥ Y VAR o Y ¥
8.60 , . * * * X * ; %

1.8 167.6 334.1 588.7 667.2 833.8 1808.3 1166.9 1333.4 1560.8

TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

. PROJECT: BIOMASSCOMP
hl EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney

i EXPERIMENT #: 29
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. Two intervariable correlations, x(1) = y(1) + ¥(2), %x(2) =
¥(2) + y(3).

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A 0.0 B: 1.0 IFUN: 25

X ENTROPY: 3.8991964 Y ENTROPY: 3.9612269
DMORPH : 0.2496906 WHOLE ENTROPY: 6.8518797

COMMENTS:

FILE: EXP29.DAT; ROUS: 1 TO 1588 ; PLOT OF IRIAL vs.  UH. ENTROPY ——
X ENTROPY  ..x.
Y ENTROPY - 5.
*897 — + —+ DMORPH— iy

6.05 1

5.29 A ff

4.54~/
3.78 {peRm e B

[y
1]
1]

3.82
2.27 4
1.51 4

8.76

r_ \‘“‘4&— " .
¥ ¥
T T T T T T T T 1

1.8 167.6 334.1 508.7 667.2 833.8 1088.3 1166.9 1333.4 1568.9
TRIAL

*
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 30

DATE: 1/18/88

INPUOT COMDITIONS: Two random variables with four components

each. Three intervariable correlations, x(1) = y{1)} + y(2), x(2)
= y(2) + y(3), x(3) = y(3) + y(4).

VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 26
X ENTROPY: 3.8101032 Y ENTROPY: 3.9612269
DMORPH : 0.3473946 WHOLE ENTROPY: 6.3682823
COMMENTS:
FILE: EXP3@.DAT; ROUS: 1 TO 1568 ; PLOT OF TRIAL vs.  UH. ENTROPY ——
¥ ENTROPY ... e
Y ENTROPY -
6.34 B e e+ DMORPH— oo .
_’__,-4-’“"—/
5.64 - //
4.93"/
4.23-‘ fra 1 0 - —)
e N VIO SV S = =
3.52 )
2.82 4
2.11 4
1.41
8.79 4
fh\“‘*' * 5 * * " * He— ¥
9.00 T T T T T T T T |
1.8 167.6 334.1 508.7 667.2 833.8 16688.3 1166.9 1333.4 1580.0
TRIAL
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 31

DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components

each. Four intervariable correlations, x(1) = y(1) + y(2), x(2) =
y(2) + y(3), x(3) = y(3) + y(4), x(4) = y(4) + y(1).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 27
X ENTROPY: 3.8055966 Y ENTROPY: 3.9612269
DMORPH : 0.4399206 WHCLE ENTROPY: 5.9900842
COMMENTS:
FILE: EXP31.DAT; ROUS: 1 TO 1588 ; PLOT OF TRIAL Vs, WH. ENTROPY ——
¥ ENTROPY ... X
, Y ENTROPY — g.
5.95 7 DHORPH— .-
5.29 -
4.63 -
&9?-(/ - ﬁ; {%? ———— = & & = g
3.31 40"
2.64
|
1.98 ]
1.32 W
866 T ~——x * * + * ¥ # +
0.80
I T T 1 i T T 1 ki
1.0 167.6 334.1 568.7 667.2 833.8 18688.3 1166.9 1333.4 15048.8
TRIAL
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
. EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 33
DATE: 1/18/88
INPUT CONDITIONS: Two random variables with four components
each. Two intervariable correlations, x{(1) = y(1) + y(2) + ¥(3),
x(2) = y{(2) + y(3) + y(4).
VARIABLES:
SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 29
X ENTROPY: 3.9173765 Y ENTROPY: 3.9612269
DMORPH : 0.2494148 WHOLE ENTROPY: 6.8712735
COMMENTS:
FILE: EXP33.DAT; ROUS: 1 TO 1588 ; PLOT OF IRIAL vs, UH. ENTROPY ——
¥ ENTROPY X

_ y ENTROPY - 5.
6.84 e ———— —+ DMORPH— -
6.88
5.32 1
4.56
3.04
2.28
1.52 |
8.76 1

e - * * # # 4 *
0.88 T T T T T T T T 1
1.8 167.6 334.1 588.7 667.2 833.9 1899.3 1166.9 1333.4 1508.8
TRIAL
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT:
EXPERIMENT:

RESEARCHER:

EXPERIMENT #:
DATE:

INPUT CONDITIONS:
each.

BIOMASSCOMP
DMORPH Characterization

David G. Boney

34
1/18/88

Two random variables with four components

VARIABLES:
SEED: .247E+413 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 30
X ENTROPY: 3.9007394 Y ENTROPY: 3.9612269
DMORPH : 0.3511075 WHOLE ENTROPY: 6.4439230
COMMENTS:
FILE: EXP34.DAT; ROUS: 1 TO 1589 ; PLOT OF TRIAL vs. UH. ENTROPY ——
X ENTROPY ... X
V ENTROPY - 8.
6.42 7 —4 DMORPH— -
. I, o e
5,71 -
4.99 -
4.28 - 5
3'5-“[;"‘7’*”
2.85 4§
2.14 4
1.43
8.71 |
S~ X * % * ¥ * *
B.aa T T T T T T T T 1
1.8 167.6 334.1 588.7 667.2 833.8 1008.3 1166.9 1333.4 1500.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
. EXPERIMENT: DMORPH Characterization
RESEARCHER: David G. Boney
EXPERIMENT #: 35
DATE: 1/18/88
INPUT CONDITIONS: Two random variables with four components

each. Four intervariable correlations x(1) = y{(1} + ¥(2) + y(3),
x(2) = y(2) + y{3) + y(4), x(3) = y(3) + y(4) + y(1), x(4) = y(4)
+ y(1) + y(2).

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 31

X ENTROFPY: 3.7893291 Y ENTROPY: 3.9612269
DMORPH : 0.4477465 WHOLE ENTROPY: 5.9422097

COMMENTS:

FILE: EXP35.DAT; ROUS: 1 TO 1568 ; PLOT OF TRIAL vs.  UH. ENTROPY ——
¥ ENTROPY - ¥
¥ ENTROPY -

-+ DMORPH— ... ¥*-

-1r

5.95 7 PN S
5.29 1

4.63 -

3.96 A

{is
h
i
*
th
t
kth

=

Vs

3.30 4
2.64
1.98
1.32 |
8.66 |

M ¥ * —x ¥
8.80 |

s " a
Gt ~ ¥

I | 1 T T 1 I L

1.9 167.6 334.1 508.7 667.2 833.8 1809.3 1166.9 1333.4 1586.0
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH - BACK PROPAGATION
RESEARCHER: David G. Boney

EXPERIMENT #: 1

DATE: 2/1/88

INPUT CONDITIONS: The x variable is a vector with four

components. This vector is the input to a 4-3-4 back propagation
network that is suppose to pass through its inputs. The four
components are the following sin functions: x(1) = .5 + .5 %
sin(t) , x(2}Y = .5 + .5 % sin(t - 1), x(3) = .5 + .25 % sin(t),
x(4) = .5 + .25 % sin(t-1)}. t is the simulation time. The ¥y
variable is a vector of four components that is the output of the
network. The run was done with learning off and the output was
sampled at the boundry of a second.

VARIABLES:

LEXP: 1500

NX: 4 NY: 4 I1C: g0

X ENTROPY: 3.1543148 Y ENTROPY: 3.5262272
DMORPH : 0.3564391 WHOLE ENTROPY: 5.0859146
COMMENTS:
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DMORPH EXPERIMENTS AND GRAPHS

: PROJECT: BIOMASSCOMP
. EXPERIMENT: DMORPH - BACK PROPAGATION
b RESEARCHER: David G. Boney
EXPERIMENT #: 2
DATE: 2/1/88
h INPUT CONDITIONS: The x variable is a vector with four

components. This vector is the input to a 4-3-4 back propagation
network that is suppose to pass through its inputs. The four

components are the following sin functions: x(1) = .5 + .5 x
sin(t) , x(2) = .5 + .5 ¥ sin(t - 1), x(3) = .5 + .25 ¥ sin(t),
x{(4) = .5 + .25 % sin(t-1). t is the simulation time. The ¥y

variable is a vector of four components that is the output of the
network. The run was done with learning off after having learned
for 1500 seconds. Sampling was done at the second boundries.

VARIABLES:

LEXP: 1500

NX: 4 NY: 4 IC: 90

X ENTROPY: 3.1543148 Y ENTROPY: 3.1566122
DMORPH : . 3363257 WHOLE ENTROPY: 4.6819711
COMMENTS :
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH - BACK PROPAGATION
RESEARCHER: David G. Boney

EXPERIMENT #: 3

DATE: 2/1/88

INPUT CONDITIONS: The x variable is a vector with four

components. This vector is the input to a 4-3-4 back propagation
network that is suppose to pass through its inputs. The four

components are the following sin functions: x(1) = .5 + .5 %
sin(t) , x(2) = .5 + .5 % sin(t - 1), x(3) = .5 + .25 % sin(t},
x(4) = .5 + .25 % sin(t-1). t is the simulation time. The ¥y

variable is a vector of four components that is the output of the
network. This run was done with learning off and sampled once a
second at the half second boundry.

VARIABLES:

LEXP: 1500

NX: 4 NY: 4 IC: 80

X ENTROPY: 3.1540511 Y ENTROPY: 3.3335972
DMORPH : 0.4456712 WHOLE ENTROPY: 4.4079671
COMMENTS:
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH - BACK PROPAGATION
RESEARCHER: David G. Boney

EXPERIMENT #: 4

DATE: 2/1/88

INPUT CONDITIONS: The x variable is a vector with four

components. This vector is the input to a 4-3-4 back propadation
network that is suppose to pass through its inputs. The four

components are the following sin functions: x{(1)Y = .5 + .5 %
sin(t) , x(2) = .5 + .5 X sin(t - 1), x(3) = .5 + .25 % sin(t),
x{(4) = .5 + .25 ¥ sin(t-1). t is the simulation time. The ¥

variable is a vector of four components that is the output of the
network. This run was done with learning off after having run for
1500 seconds with learning on. the sampling was done once a
second on the half second intervals.

VARIABLES:

LEXP: 1500

NX: 4 NY: 4 IC: 80

X ENTROPY: 3.1540511 Y ENTROPY: 3.1570110
DMORPH : 0.5151951 WHOLE ENTROPY: 3.8158778
COMMENTS:
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APPENDIX C

PROJECT:
EXPERIMENT:

RESEARCHER:

EXPERIMENT #:
DATE:

INPUT CONDITIONS:

.5 % sin(t) , x(2)
sin(t), x(4) = .5 +

DMORPH EXPERIMENTS AND GRAPHS

BIOMASSCOMP
DMORFPH - KLOPF

David G. Boney

1
1/29/88

The x variable is a vector with four

components. This vector is the input to a 4-2-4 Klopf network.
The four components are the following sin functions: x(1) = .5 +
.5 + .5 x sgin(t - 1), x(3) = .56 + .25 %

.25 % sin(t-1). t is the simulation time. The
y variable is a vector of four components that is the output of

the network. The inputs and outputs where in three second
intervals. This run was done with learning off

VARIABLES:

LEXP: 1475
NX: 4

X ENTROPY:
DMORPH :

COMMENTS:

FILE: HK4BASE.JU9; ROUS: 1 TO 1475 : PLOT OF TRIAL

3.1604311
0.4795595

4 IC: 90

Y ENTROPY: 3.6817343
WHOLE ENTROPY: 4.7713003

vs. UH. ENTROPY ——
% ENTROPY ..
¥ ENTROPY - 8.

4.79 7 I\JWWMWW—-—%— DMORPH~—+ o

~P‘
4.26

3 » 72 - M‘._e_.,.—h—d“"s-ﬂ""‘-

]

I
‘!
z.ss-yé

‘

2.13 4
1.60 -J;‘

1.86

= -5~ = —~g~ = —8

3. 19 “ /\ /r\_ /A(M.WN—N-’—.;R—_’—J-*M_’_AJM
Lo
)

1.8 164.8 328.6

1 T T T T 1

492.3 6%.1 819.9 983.7 1147.4 1311.2 1475.8

TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH - KLOPF

RESEARCHER: David G. Boney

EXPERIMENT #: 2

DATE: 1/29/88

INPUT CONDITIONS: The x variable is a vector with four
components. This vector is the input to a 4-2~4 Klopf network.
The four components are the following sin functions: x(1) = .5 +
.95 ¥ sin(t) , x(2) = .5 + .5 % sin(t - 1), x{(3) = .5 + .25 %
sin(t), x(4) = .5 + .25 ¥ sin{(t-1). t is the simulation time. The

y variable is a vector of four components that is the output of
the network. The inputs and outputs where in three second
intervals. This run was done with learning off after having run
for 1500 seconds with learning on.

VARIABLES:
LEXP: 1475
NX: 4 NY: 4 IC: 90
X ENTROPY: 3.1604311 Y ENTROPY: 3.1796041
DMORPH : .4120096 WHOLE ENTROPY: 4.3539858
COMMENTS :
FILE: HK4AFTR.JU3; ROUS: 1 TO 1475 ; PLOT OF TRIAL vs. UH. ENTROPY ——
¥ ENTROPY
. Y ENTROPY -9
3.044 | ¥
3.45 -
NIRRT B e PR - WP NN Va8 -
2.96 /;W
2474 |
1.97 1,
1.48.]\;
8.99 4.
8.49 N e T o e
8.00 I T T T T T T T 7 )

1.0 164.8 328.6 492.3 656.1 819.9 983.7 1147.4 1311.2 1475.8
TRIAL
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH - KLOPF

RESEARCHER: David G. Boney

EXPERIMENT #: 3

DATE: 1/29/88

INPUT CONDITIONS: The x variable is a vector with four
components. This vector is the input to a 4-2-4 Klopf network.
The four components are the following sin functions: x(1) = .5+
.5 % sin(t) , x(2) = .5 + .5 % sin(t - 1Y, x(3Y = .5 + .25 %
sin(t), x(4) = .5 + .25 % sin(t-1). t is the simulation time. The

¥ variable is a vector of four components that is the output of
the network. The inputs and outputs where in three second
intervals. This run was done after changing two of the neuron
coefficients, running the network for 1500 seconds with learning
on, and then running for 1500 seconds with learning off. The
samplingd was done with learing off.

VARIABLES:

LEXP: 1475

NX: 4 NY: 4 IC: 90

X ENTROPY: 3.1604311 Y ENTROPY: 3.1176403
DMORPH: . 4120096 WHOLE ENTROPY: 4.3872814
FILE: HK4AFTRZ2.JU9; ROUS: 1 TO 1475 ; PLOT OF TRIAL vs.UH, ENTROPY ——

X ENTROPY  ..x.
¥ ENTROPY - g
4.43 A e e e oo e o p et DHORPH—+ .. *
WA

3.93 4

3.44 4 | .

2,954 ¥\

2.46 ;f

1.974f;

1.48 '

8.98 .

&49’/wﬁ—aaan«xaf—w*f—f—*— * + * RS

0.89 A T T T T T T T 1

1.8 164.8 328.6 492.3 656.1 819.9 983.7 1147.4 1311.2 1475.9 e
TRIAL LJ
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ABSTRACT

Realtime signal processing of multielectrode probes of living
neural networks is limited both by the speed and flexibility of
. the host computing eguipment and by the efficiency and flexibility
of the signal processing alaorithm. In this report, we describe
the structural and functienal design of a multichannel signal
processing algorithm which has the ability to dynamically include
or exclude processing steps and subroutines in order to maximize
the utilization of available hardware. That is, the algorithm
will perform all the processes that it can perform on realtime
data in & racetrack buffer without either overtaking the incoming
data or falling behind and being lapped thereby. FRemaining
praocesses are performed on intermediate stored data in an aff-line
(non-realtime) mode.
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1. INTRODUCTION
h 1.1 Review of the Problem

The primary problem (ddressed by this research is the fact
that it is now possible for most neurophysiology laborateories to
collect more parallel channels of data from living neuron networks
than they can afford to either save or to process in real time.
For example, Dr. Gross®s MMEF apparatus is now collecting 34
parallel channels of data at 20K samples per =zecond each. Simply
transferring that data at 2 bytes per sample to tape or disk for
subsequent non-realtime processing would fill up a SOMB velume in
a little over half a minute.

Even though a half minute®s worth of data is enough to
provide useful information on the network structure, the MMEP
network, but to talk back to it as will. Without realtime
analysis of the current patterns in the networlk, this valuable
potential cannot be exploited. That is, while it would be
possible to “shout” at the network at random intervals and then
analyze the reactions offline later, the truly earthshaking
experiments that could be performed require the detection of
developing patterns of signals in the network (in real time) and
the selective feedback of signals to interrupt or respond to those
patterns.

bith the capability for realtime interaction, it would be
poscsible for the first time to test certain mathematical models of
newral network behavior, such as the synaptic plasticity models
which are used to formulate explicit mechanisms for the Hebbian
learning laws (cf., Grossbherg, or Hestenes [21). Tn particular.
Groseberg’s "outstar learning theorem" could be tested by
repeatedly injecting a pattern of signals to coincide with the
cccurrence aof a pattern in & natwally coccuwrring sequence. Later,
if the artifticial stimulus evokes the same response as the natural
pattern, but in the absence of the natural pattern, and in the
absence of any prior ability to eveoke that response, then the
required synaptic plasticity will have been demonstrated. This
could have enormous consequences for science, with implications
not only for newaophysioclogy, but for psychology and computer
science as well,

To do the necessary realtime processing on which thecse
experiments are prediceted —— indeed, toc even analyze the
culture®s network behavior offline in nonrealtime -— requires the
development of mathematical tools, computaticnal algorithms, and
hardware configurations that may not now exist. Since the
hardware selecticon is limited more by ecornomic considerations than
by technrnological capsbilities, we are driven to try to coa: the
resulting algorithme to be "hardware friendly". That i=, we want ’ %
the algorithm to be able to adapt to the host without excessive

rJ




IO T X, T U m

MARTINGALE RESEARCH CORFORATION
NTSU TECHNICAL RERPGRT 8/01/86

i reprogramming. The meaning of this statement will become more
clear in section 1.7 (Objectives); however, we shall now review
the existing technigues for analysis of multichannel neural
network data.

' 1.2 Selection of Methods
The tasks which must be performed by the computer in order to

analyze the network data can be summarized in the following
sequence:

Detect spikes in the signals which
are sensed in each electrode.

(2) i Classify the detected spikes
! according to their source neurons.

i Compress the data streams from :
! each source neuron into a minimal H
H stream still containing enough H
H information to un—-compress and |
! recover the original data. H

(4) } FProcess the compressed data from :
i all source neuwrons to identify the |
H communication structure of the i
) ]
¥ )

total network

The steps in this sequence become more difficult as one proceeds,
uritil at step (4) one finds almost nothing beyond some rather
straightforward histograms being attempted in the current litera-
ture. Since the histograms are informative, we shall provide for
their computation, but we shall also attempt a more network-
theoretic description of the system.

.4
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1.2.1 Spike Detection

Spike detection is clearly the easiest step to perform. One
"merely" csets a threshold at a level which excludes the noise, and
whenever the {(absolute value of the) digitized voltage level
exceeds the threcshold, one declares that a spike has been
detected. We put "merely" in quotes because the selection of the
threshold level in a multichannel process will be done by the
computer according to some algorithm, and this algorithm is
considerably less transparent than the thresholding instruction.

Establishing the threshold -—- an easy task for a person
looking at an oscilloscope trace —— is escsentially a problem in
"constant false-alarm rate" (CFAR) methods. Digital CFAR thresh-
oclding is discussed by Rohling in [351. In the absence of spiking
signals, i.e., when only noise is being sensed, the threshold can
be determined by computing a histogram of the digitized voltages
and finding a level within which enough aof the samples lie, so
that only once in a specified number of seconds does & noise
sample lie outside the threshold.

Unfortunately we usually have to take the noise as it comes:
with some signal added to it. Therefore in order to set the CFAR
threshold we have to mask ocut the spikes so that they are excluded
from the histogram. 0f course, we can’t use thresholding to find
the spikes, because it is the threcshold we are trying to find! ©So
we have to use some other a—priori knowledge to find and mask the
spikes. If the computational application of this knowledge were
quicker tham threcsholding, then we would natuwally use it for the
realtime spike detection; but it isn*t, so we apply it prior to
realtime processing in a so-—called "learning'" mcde.

There are a number of different masking technigques, depending
on the application, but one that comes to mind exploits the
continuity (smoothness) of the spike trace as opposed to the
roughness of the noise. Thus the algorithm will examine & number
of consecutive samples to see if their magnitudes are all
unusually large {(compared to an unmasked histeogram) and all on the

came side of the origin. If =0, an appropriate amcunt of data
around the suspected spike is masked off, i1.e., removed from the
histogram. This process continues to be performed on the learning

data set until no further spikes can he identified, whereupon the
remaining histogram represents an approximation of the probability
density function of the noise alane. The threshold can then be
selected at that value for which the number, n, of szamples whose
magnitudes exceed the threshold, divided by the length, T, aof the
learning =sample in seconds is most nearly equal to the decsired
false alsrm rate.

One could detect spikes by algorithms that are more
complicated than simple thresholding, such as by matched
filtering, maximum likelihood estimation, and many others {(each
requiring its own "learning mode”" and each also requiring its own
thresholding operation), but these methods can be reserved for
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some post-detection processing in the remaining steps of the
seqguence.

1.2.2 8Spike Classification

The next task is to determine whether the signal on a given
electrode is the superposition of spike trains from more than one
neuraon source, and if so, to separate the signal into its
constituent parts. A survey of computer methods for this
separation task was given by Schmidt [61 in 1984. Other
techniques can also be found (cf, Okada and Maruyama {43 ). Our
approach in this section is to select a sequence of methods based
on a progression from the computationally simple to the more
difficult. We choose this approach because the structural design
of our algorithm (Chapter 2) calls for the use of simple methads
on channels where simple methods suffice, and harder methods where
they are required, thus using available processing time most
efficiently. (Hardware configurations employing & dedicated
signal processor in each channel will not need to avail themselves

As with the detection process, spike classification is done
in two parts. During a learning mode each channel is evaluated to
determine the values of some variables which will be used in the
real time mode and which are expected to change very =slowly, if at
all. For spike separation, these variables will partition the
channels into subsets, each of which can be de—interleaved by a
different class of algorithm.

The first of these variables will identify the number of
sourcees being received on the channel. If only one source is
being received, then step (2) of the sequence is trivial. The
second variable will be a vector whose components identify the
amplitudes at which distinct sources are found and the number of
distinct sources that are found at each amplitude. If no
amplitude bin has more than one source contributing to it, then
the classification can be performed by amplitude discrimination.
Eut if any bin has more than one source then some form of waveform
discrimination will have to be used to separate the sources.

The easiest way te determine that there are more than one
source neuron represented in the signal is to perform a one-

spike. (A general description of cluster analysis algorithms is
given in Appendix A.) 1f more than one cluster is found, then

there are more than one source. The fact that the converse of "
that statement is false necessitates the use of more complicated
algarithms for the classification process, but since these more
complicated mthods work best when the peaks are presented in
constant-amplitude clusters, we may as well do the easiest job
first.

(4}

- .
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To do the amplitude (peak) cluster analysis, one must first
detect and measure the height of the greatest local extremum
within a single pulse-width of the threshold crossing {(detected
in step 1). this can generally be done without any multiplies or
divides. (See Appendix B, or reference [4]). Using a cluster
diameter that is large enough to allow for Fnown amplitude
variations from single sources, one then sorts the peak values
into a histogram (see Tou & Gonzalez [6] ) tec find the clusters.

To determine whether the peaks assigned to a given cluster
break down further into different wave shapes one can then do an
n—-dimensional vector cluster analysis, where n is the number of
samples after a threshold crossing needed to cover all spike
waveforms. The n-dimensional clusters are found analogously to
the way the amplitude clusters are found, but the distance measure
is a little more involved and the cluster diameter is more
difficult to establish (See Appendix A).

Once the waveform clusters are identified, it might be
possible to do the realtime assignment of spikes to the
appropriate cluster with an algorithm that is simpler than a
template comparison or a matched filter. But even with a
"hardware friendly" algorithm, it is fair to assume that there is
a vector or array processor lurking in a wait-state nearby,
eagerly contemplating its next victim. Therefore, we shall prefer
to simply vectorize the distance between the realtime pealk and the
centers of the clusters to assign it to its source.

1.2.2 DATA COMPRESSION

The first step in data compression is almost taken care of
in tasks (1) and (2) simply by detecting and classifying the
spikes in each channel. By delivering a report of the TIME when
the =pike was detected over the threshold the SOURCE which emitted
it, and (perhaps) the measured spike amplitude, one has compressed
the 20 or so sample values representing the spike, and the 80 or
so0 preceding sample values representing noise alone into only ane
or two values from which a replica of the spike (sans noise) can
be reproduced.

Ore essential item in the description of the SOURCE (though
it may actually be irrelevant as far as the neuronal "message" is
concerned) is the wave shape of the spite, which was discovered in
the classification step. Since this shape is expected to change
only very slowly, if at all, during the experiment, it can be
identified (via pointers or links to a template library) with the
array into which the TIME values are reported. Thus., if one wants
to resurrect a replica of the raw data which was recorded from a
particular source neuron, one can retrieve the sequence of times-—
of-arrival of =pikes from the array associated with that source,
and at those times construct a pulse with the shape in the
template library that is linked to the scurce. If amplitudes are
considered important, the (riormalized) templates can be scaled by
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the amplitude that was stored alongside the time of arrival.

Data compression is possible whenever there are replicated
patterns in the data that can be parametrized and reduced to a
symbol, followed by a list of values of the parameters. Thus, in
the previous paragraph, raw voltage samples from an electrode
which is sensing two sources is compressed into the following
symbols and parameter lists:

SOURCEL ((T11,A11),(T12,A12), ...)
SOURCEZ((T21,A21), (T22,A22), ...),

where Tij is the time of arrival of the j-th pulse from the i-th
sagurce, and Aij is its amplitude. The name, SOURCELl, is taken to
be equivalent to the unchanging characteristics of the source.
Similarly, mathematicians use symbols like "SIN", and "LOG" to
compress the descriptions of families of functions, and by
supplying parameters like the frequency of the sinusoid, and the
base of the logarithm, they can then resurrect a graphical

- representation of the function.

"Bursting" is an observable feature of signals drawn from
certain kinds of neurons. Even though the literature shows little
agreement on a definition of what might constitute a burst, we can
sidestep that issue for the purpose of data compression. For our
purpases, it is sufficient to establish a library of certain
patterns occcurring in the compressed spike reports, and when those
patterns are detected, reduce them to a more compact
representation. We suggest the following definition:

A "burst" is either (1) three or more consecutive spikes, whose
amplitude seguence lies within a martingale envelope roocted on the
first spike, and whose interval sequence lies within a martingale
envelope rooted on the first interval; or (2) any single spike
which fails to fit in a sequence of the previous category. The
envelope to be used on the amplitude sequence should be of the
form,

a + (b—-a)exp(-kt) +/~ vt ,

where the values of a, b and ¥k can be determined from the
first three amplitudes in the candidate sequence {(since vt is
nearly zero at the start), and v 1is the variance of the
amplitude pracess. Similarly, the envelope to be used on the
interval sequence should be of the form,

b — mt +/- v't ,

where b7 and m can be determined from the first two intervals,

and v' is the variance of the interwval process.

Thus, in & burst, one expects the amplitudes to fall off
along some declining exponential starting at the first pulse, plus
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or minus a margin that gets a little wider as the burst proceeds;
and one expects the interpulse spacing to increase approximately
linearly with time, again with a margin that increases down the
line. The parameters a, b, b’y k, and m are measuwred in a learn
mode, and taken to be characteristic of the source; while v and
v® are taken to be rejection thresholds outside of which the
candidate burst sequence terminates.

1.2.4 NETWORK ANALYSIS

The state of the art in network communication analysis of
living neuron networks is still rather primitive, which is to be
expected due to the quite recent emergence of the technology for
simultaneocus sensing of numerous points within isolated networks.
The principal tocl for the analysis is the pairwise correlation of
features of the spike trains by way of the cross-correlation
histogram. These methods are described in Chapter 10 of MacGregor
and Lewis (31, and in several other papers (e.qg., [11).

We feel that although these correlograms are useful tools for
sparsely connected networks such as might be found in aplesia or
in sensory ganglia, we are not likely to find statistically
significant correlations appearing in the more densely connected
networks. The reasoning here is that networks such as found in
the mammalian cortex are structured for the efficient sorting of
coordinated patterns of input signals, rather than for serving as
in~line amplifiers of single inputs. Consequently, it is only
when a synaptic input is a part of a coordinated pattern of inputs
that it will participate in the generation of spiking or bursting
at the output of the afferent neuron.

In order that these experiments with the MMEP apparatus
should fulfill their potential, we feel that they should result
not in the publication of a report that is full of histograms and
other statistical humdrum, but rather that they should be used to
confirm or eliminate specific gquantifiable hypotheses regarding
the pocssible mechanisms of learning, recall, synaptic plasticity,
memory storage, and the like. To do this requires the use of
models which 1ink the hypotheses to certain parameters which are
susceptible to measurement with the apparatus.

One =zuch model is provided in the system of coupled nonlinear
ordinary differential equations known as Grossberg’s Field
Equationse {(nicely presented by Hesternes in [2]1). These equations
describe the incremental effect on the ionic potential energy of
certain pulse patterns arriving at the synapses. The details are
important, but they can be summarized by pointing out that for the
excitatory synapses, the effect of the incoming signal in driving
the neurcon toward its firing threshold is propeortional to the
recent history of the pul=se repetition frequency (FRF) on that
synapse. The constant of proportionality is a charecteristic of
the synapese that can be modified by the coincidence of neuronic
firing and input to the synapse. It is called the synaptic

-
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coupling coefficient. The amount of history that is relevant is
controlled by the rate at which the neuron will dissipate its
energy without firing.

According to this model, one would expect to find
correlations between the onset of bursts from a given neurorn and
the PRF history on its synapses. This suggests that converting
the spike data to the corresponding FPRF history, and "stacking"
these histories whenever a burst occurs at the output of a
particular neuron, might accumulate strong pealks on signals that
are connected to excitatory synapses. On the other hand, if the
stacks are triggered at the onset of blank intervals in the
newron’®s output, then the presence of strong peaks would indicate
an inhibitory influence. In contrast to the cross-correlation
{interval) histogram, which attaches significance to the influence
of a single spike at the input to a subsequent single spike at the
output, this technique attaches significance to the recent history
of ionic current-pumping to the onset of bursting. The assumption
here is that the subsequent spikes in a burst are a "ringing"
effect due to the close coupling of each neuron to itself, rather

- than a direct effect of the input signals. Therefore, if they
vere used as refer=nce points for stacking the input PRF signals,
they would only contribute noise and computational burden.

1.3 SOFTWARE DEVELOFMENT OBJECTIVES

The structural design of the signal processing software that
is presented later in section 2 is guided by the following
considerations. First is the need to make efficient use aof the
processing hardware in the MASSCOMF S700 so that the least amount
of available data from the MMEFP apparatus is lost. Preliminary
timing calculations have shown that so long as the preprocessing
tasks {(tasks 1 and 2 from page 3I) must be handled by the MASSCOMP
it will not be possible to dao any burst detection or networl
analysis in real time, and probably only the top & to 10 channels
in the priocrity list can be reduced to spike data. The remaining
analysis tasks will have to be done off-line in non-realtime using
previously saved spike data.

However, the next consideration is that hardware development
is under way for the offloading of the preprocessing from the
MASSCOMFP to an array of TMS I2020 processors. Therefore, the
processing software needs to be flexible in its scheduling of
processing tasks, according to whether its data is coming directly
from the MMEF in raw form, indirectly from the MMEF through the
32020 boards as spike data (but still in real time), or directly
firom disk or tape storage as spike data or burst data on demand.

The fact that the software is being develaoped in response to
experimental necessities requires careful attention to structured
programming and modular design. Our initial expectations of the
signal processing routines that will be effectual for the desired [
analyses will have to be modified with experience. The ability to
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hang new and different subroutines into the scheduler without
incurring timing or synchronization problems that propagate
unchecked through the rest of the processes must be built in from
the start.

Because of the limitations on the size and the intensity of
the programming effort, it is recognized that it will not be
feasible to attempt to implement a large and complex software
system. On the other hand, it is highly likely that a low level
of programming effort will be applied to the project aver a number
of years. It is wise, then, to take a lesson from this
investigator®s past: In 1980 I was assigned to restructure a
system analysis program that was written to predict the
performance of a large solar photovoltaic energy system. That
program was begun small and grew as the system developed. It was
in the form of a single FORTRAN main program without a single
subroutine call aside from intrinsic functions! It was several
thousand lines of incomprehensibie rat®s nest. I am not
suggesting that anyone on this project would be guite that crude.
Rather, I am emphasizing that it is all right to design a modular,
structured, and comprehensive signal processing program that is
perhaps overwhelming in its scope, but that is at least not likely
to have to be razed several years down the road. With that
thought in mind, we proceed to the structural design of the
algorithm.

2.0 STRUCTURAL DESIGN

The structural design of the processing software is specified
by the HIPO ("Heirarchy, Input-Frocess—-0Output") charts which are
included in Appendix € to this report. The following paragraphs
are intended to elaborate on those cherts to assist the
pragramming team in their implementation.

2.1 TOF LEVEL HIFO DESCRIFTIGH

The top level HIFO chart contains five primary processes.
The first process controls the initialization of the program and
its parameters to reflect the experimental configuration and the
proper disposition of output data (filenames, display devices.,
etc.). The user also specifies his processing priorities to
override defaults that will be accepted by the scheduler.

The second process accepts data from the selected source
devices or data files, and performs "learn mode" operations on it
in non-real time. These operations provide the preliminary
pattern recognition functions to establish threcholde, identify
clusters and cluster centers., and tailor a processing sequence to
each channel for the benefit of the master cscheduler.

The third process accepts data from the designated source and

applies the appropriate data compression subroutines in accordance
with the processing requirements and timing limitations. This

10
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process does not analyze the compressed data (except insaofar as
some form of analysis is inherent in the compression), but instead
provides various levels of compressed data to facilitate the

analysis routines in the fourth process. (The functions to be
performed are described in paragraph 1.2 and in Appendices A and
B.)

The fourth process applies certain statistical and analytical
functions in accordance with user specifications and timing
limitations. This process obtains data from the various levels of
compression for graphical representation, listings, etc.; it
computes histograms, correlograms, stacks; and it provides
transfer of compressed data and processing results to appropriate
output files/devices. This process provides the primary user
interaction with the ongoing experiment.

The fifth process terminates the experiment. It is
responsible for purging buffers, closing files, appending user-
supplied text to archive files, and the like.

11
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AFFENDIX A

CLUSTERING ALGORITHMS

A.1 A ONE-PASS ALGORITHM

The following algorithm works well when the data are grouped
intoc clusters whose diameter is less than the distance to their
nearest neighboring cluster. Significant violation of this
condition will make the algorithm highly sensitive to the arbi-
trary choices imposed in the ordering of the data.

In the following description, the data points X, ¥, etc.,
may be taken to be scalar voltage samples, in the case where we
are looking for clusters in the amplitude data; or they may be
taken to be the vectors of dimension N consisting of the first
N samples including and following a threshold crossing, in the
case where we are looking for clusters in the pulse waveform
types. In either case, the notation 1 X~Y! means the Euclidean
distance between the points, whether they are in one dimension or
in N dimensions.

Let (X1,X2,...,Xn) be a sequence of n data points (or
vectors), and derine Zi to be the i—-th cluster center. The
algorithm finds the set {Zi)} of cluster centers. First, it is
required to obtain a cluster diameter, D, and we assume here that
we can obtain it by experimentation (to see which values produce
the most reasonable clusterings) or by a-priori knowledge of the
variance in amplitudes from a single emitter.

Having established D we then define 21 = X1. Then, for
i =2 ton , compute the distance from Xi to each of the cluster
centers, Zj. If the distance is greater than D for each j.
then add Xi to the set of cluster centers. 0Otherwise, assign
X1 to the first cluster for which 1Xi-Zjii < D.

If the clusters are sufficiently well-defined that this is a
reasonable algorithm to use, then we recommend a post-clustering
step to redefine the cluster centers {(which will be used later for
the realtime amplitude discrimination) to be the centroids of the
individual clusters, found by vector or scalar averaging.

A.2 The MAXIMIN ALGORITHM

The Maximin clustering algorithm, like the one described
above, is a heuwrisgtic procedure but in this case multiple passes
through the data are reguired. The difference is that the Maximin
looks for clusters that are farthest apart first, and instead of
having to know an explicit feature of the clusters in advance

-
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(i.e., the diameter, D), we have to exper iment with a more
nebulous parameter, F, which is a number between ¢ and 1.
Start with F = 0.5 for now.

As with the one-pass algorithm, we begin by selecting the
first datum (scalar or vector) X1 to be the first cluster center,
2. For the second cluster center, 72, we find the data point
that is farthest from Z1. (I the distance between 21 and Z2 is
sufficiently small, we can declare that there is only one cluster
and quit.) Let Al be the distance (Z2-71!.

Suppose we now have a set {Z1,...,Im} of cluster centers, a
number A{m—-1) which is the average of the previous maximum
distances, and let {¥i,...,¥n)} be the set of data points that have
NOT been assigned to clusters yet. For each j = 1...m, compute
the distances Dij = 1Zj-Yil, i = 1...n , and save the MINIMUM of
these, say, Dj’. Then find the MAXIMUM of the {Dj" : j=1,...,m>.
Call it D°. i¥f D' is greater than F¥A{m—-1) then declare the
cample corresponding to D" to be a new cluster center, Z{(m+l),
and compute the new average maximum distance with D° included.
Otherwize, terminate the algorithm.

e A % ¥ ull b

. T

.
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AFFENDIX B

FPEAE-FINDING ALGORITHMS

E.1 THE GRADIENT-SIGMN-CHANGE ALGORITHM

It is well-known from elementary calculus that an extremum of
& differentiabhle function occure wherever the sign of the
derivative {(gradient) changes from positive to negative, or vice
VeI S&. This fact has beesn used by numerous authors (cf, {(41), and
it provides a fast and easy computationsl method whenever the
sigrial exhibits well-separated peaks that are well above the
noise. Those conditions seem to apply in the present situation.

The algorithm is applied whenever the thresholding detector
has declared that the signal has crossed the threshold, and it

ccontinues until an end condition is satisfied. Let X! be the

datum whose absolute value has just exceeded the threshold, and
let n be the least number of samples that are ever needed at the
present sample rate to cover any spike waveform in the data. For
each j =1 ... n we checht that the sign of (Xj=¥X{(j—-1})) is
different from the sigr of (X{i+1)-X3j). Zero i=s included as a
possible third "sign". If the sign has changed, then an extremum
of height (or depth, if negative) Xi 1is declared to have
occurred at the index (time) j. ancd the current index is given an
increment (in ADDITION to the normal loop increment) so that in
case (X{j+i1)-Xj) was rero the next point will not also be
declared as a peak.

The algorithm continues until a predetermined number of peaks
have been found, or until the n-th datum following the threshold
crossing has been tested, whichever occurs first. FProcessing the
n—-th datum without finding a peal must be reported as an error.

The manner of detecting that the two differences have changed
=sign depends on the number of CPU clock cycles that are required
for & multiply inmstruction. If the product of the adjacent
differences is less than or equal to zero, then the sign has
chianged. However, if a multiply is too costly, then the logical
decisions can be streamlined by keeping track of whether the
threshold crossing was a negative crossing or & positive crossing
and using one of two sequences of logical tests, one being
optimized for ascending data, the ather for descending data, with
a switch beinrng made after each peal is found.

The reasor that one might want te find more than one peak in
the waveform is that it provides an additional parameter for
amplitude discrimination that might be used successfully to avoid
having to classify the peal with a Euclidean metric in 20 to S0
dimensions.

N
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AFFENDIX C

"HIFQ" CHARTS
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